Subaru+Gemini follow-up for IceCube high-energy neutrinos

Tomoki Morokuma (The University of Tokyo, Institute of Astronomy)

High Energy Neutrinos from High Energy Cosmic Ray

Origin of high-energy (TeV-PeV) neutrinos (cosmic ray)

transient (variable)

EM Counterpart Search of IceCube events

- □ automatic public alert since 2016/Apr
- □ localization: ~1 deg (track event)
 - □ O(10³) transients@optical w/8m telescopes (TM+2008, Yoshida+2017)
- Unknown distance to the source, but expected to be <z>~1
- (Expected to be bright (flaring) at high energy (gamma, Fermi/LAT))

Optical/NIR searches include...

- □ wide-field (~1 deg) imaging (w/ Subaru/HSC) surveys for
 - variability / transient sources
 - rapidly variable blazars
 - □ peculiar supernovae
- □ follow-up spec. (w/ Gemini/GMOS)
 - u to determine the redshift
 - □ to characterize the counterpart
 - u to say "this is the origin of this neutrino detected by IceCube"

IceCube Collaboration+2018 Right Ascension [°]

- IceCube alert (GCN 21916): 2017/09/22, 20:54:30 (UT)
- 7 BROS sources within IceCube-170922A error region
 - TXS 0506+056 variability detected with Kanata/HONIR on 2017/09/24
- found Fermi/LAT (gamma, ATel #10791, Tanaka+), ASAS-SN (optical) variabilities

```
==> multi-wavelength follow-up
```

optical/NIR imaging, spectroscopy, polarization:

incl. MITSuME, Kiso, Nayuta, Kanata, IRSF (OISTER)

- + Subaru (TM+ in prep.)
- z: not determined reliably

Optical Spectroscopy: redshift determination

Optical Spectroscopy: redshift determination

Optical Spectroscopy: redshift determination

Other possibilities for IceCube-170922A???

- origin: TXS 0506+056 (blazar, BL Lac)
- No supernovae (possibly emitting neutrinos) there?
 - □ Type Ic or Type IIn?
 - ~25 mag @ z~1
 - similar to HSC, DECam trials to search for other kilonova candidates than AT2017gfo for GW170817 (Tominaga+2018)
- Limited data for SN search
 - Morgan+2019 w/ Blanco/DECam (z<0.3)
 - □ z-band in 1 epoch w/ HSC (another epoch for reference, TM+ in prep.)

Supernova light curves & spectra @ z~1

15

Summary

- EM identification for neutrino sources is one of the important "multi-messenger" astronomy.
- Origins of high-E neutrinos are still ill-constrained.
- EM Follow-up Observations for EM Counterparts of IceCube neutrino sources are being intensively made.
- Difficulties in general there are
 - multiple origins (theories) under consideration
 - multiple observing strategies required
 - IceCube localization is not so good (still much better than gravitational wave)
 - wide-field observations required in general
- One Success: TXS 0506+056 for IceCube-170922A
 - □ blazar/BL Lac@z=0.3356
- □ Follow-up Observations Now: Uniqueness of Subaru+Gemini
- □ Follow-up Observations in Future: Subaru/LSST+TMT
- Follow-up Observations for "Multiplets" are desired.