Subaru 20th Anniversary Conference Nov. 19th, Kona, Hawaii

Multi-wavelength High Resolution Observations of Protoplanetary Disks

Takayuki Muto (Kogakuin University)

Protoplanetary Disk

- Birthplace of planets
- ~100au scale at >140pc
- Imaging with < 0.1 asec

Protoplanetary Disk Imaging

- Disk substructure and disk dynamics
 - Identify structures associated with disk dynamics
 - (Indirect) signature of planets
- Inner disk structures
 - Structures at "solar-system" scales

Multiwavelength Disk Imaging

- Disk component
 - Gas → mainly with sub-mm, velocity structure
 - Dust → NIR scattered light and sub-mm thermal emission

Spatial Resolution

- λ =1.6um with d=8m telescope (Subaru)
 - ~0.04asec ~ **6au at 140pc**
- λ =1mm with d=10km telescope (ALMA)
 - ~0.02asec ~ **3au at 140pc**
- Spiral / gap structures by a planet at <30au
- Overall disk structures at <~10au

High Resolution Obs. at NIR

Credit: NAOJ https://subarutelescope.org/Pressrelease/2013/08/04/j_index.html

High Resolution Obs. at sub-mm

Many ring-like structures

Some asymmetries

Case Study of Inner Disk: J1604

- In Usco OB Assoc.
- SpT: K2, M~1Msun
- Age ~ 4Myr
- Mdot ~ 10⁻⁹ Msun/yr
- NIR "ring" with Subaru
- R~63au

J1604 ALMA Obs.

- ~0.25asec~40au resolution
- Ring in dust and gas
- Different radii/profiles for different probes

Dong et al. 2017

Distribution of Dust and Gas

- Relatively smooth gas distribution
 - Planets?
- Sharp cutoff for dust distribution + low accretion rate
 - Photoevaporation?

Inner gas structures

Another ALMA obs. with
~0.2asec~30au resolution

- Velocity twist in the inner gas disk
- Misaligned inner disk?

Dipper Phenomenon

- Irregular light curve
 - Occultation by an inner disk
 - Should be inclined relative to the outer disk
- Consistent with the velocity structure?

Case Study of Planet(?): TW Hya

- NIR image @ H-band
 - Different radial slope
 - Transition at ~20au
 - Strong flaring at 20-40au?

ALMA High Resolution Images

(a) 1.0 -1.0 dDec. [arcsec] 0.5 0.8 0.0 0.6 0.4 -0.50.2 30 au -1.0-1.0 -0.5-1.0dR.A. [arcsec]

- ~1au resolution image at Band 7
- ~3au resolution image at Band 6

- Multiple gap structures
- Point source at ~50au

Andrews et al. 2016 Tsukagoshi et al. 2016, 2019

Point source? without a gap?

- Azimuthally elongated ~1au x 4au
- Circumplanetary disk? Dust clump?
- No gap: "planet" should be <Nep. mass

Tsukagoshi et al. 2019

CPD should be observed at NIR-MIR

- Gas accretion onto a planet
 - Gas temperature may be as high as ~1000K
- Sub-mm emission is from "cold" outer region of a circumplanetary disk
 - Emission looks similar to "dust clump"

(Near) Future Scope of High Res. Imaging at NIR

- Inner disk
 - J1604: Warped inner disk in an inner hole
 - Better inner working angle?
- (Accreting) Planets in a disk
 - PDS70: NIR point source in a gap
 - TW Hya: sub-mm small source in a disk
 - Search for accretion signature Halpha?