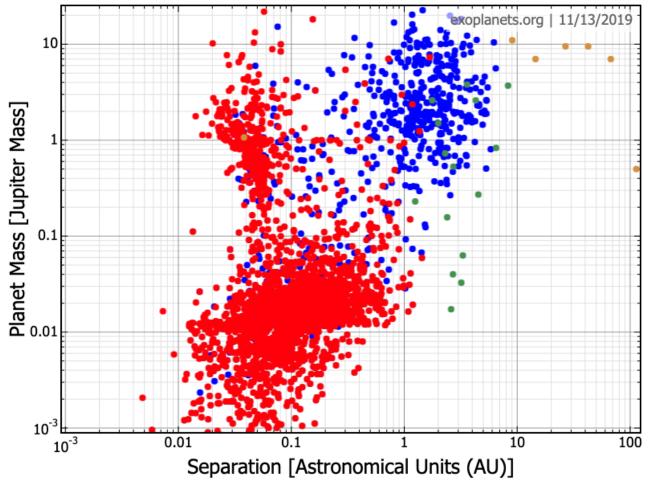
Atmospheric Characterization and Further Orbital Fitting of κ And b

Uyama et al. 2019 accepted for publication in AJ arXiv on 11/25

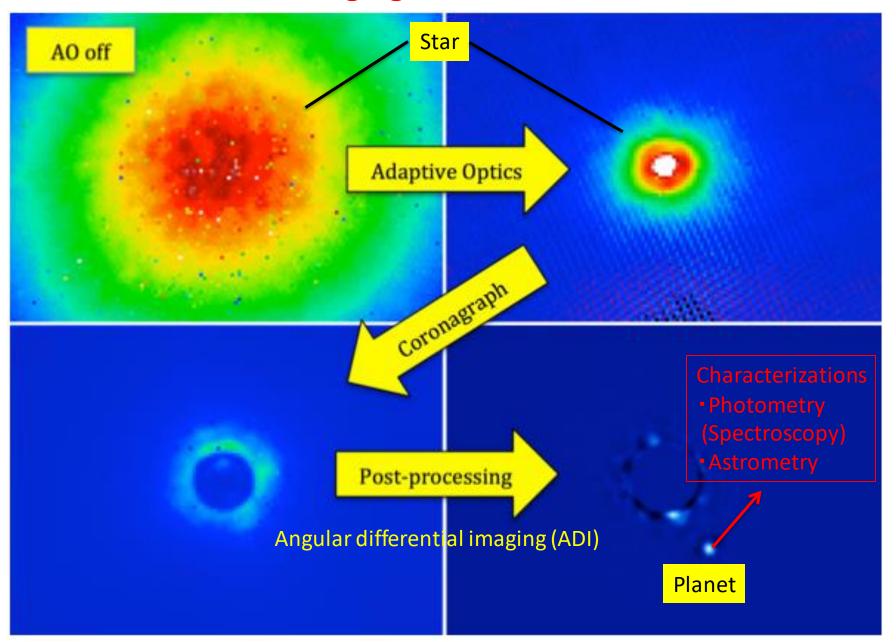
ATMOSPHERIC CHARACTERIZATION AND FURTHER ORBITAL MODELING OF κ AND B

TAICHI UYAMA^{1,2,3,4}, THAYNE CURRIE^{5,6,7}, YASUNORI HORI^{8,4}, ROBERT J. DE ROSA⁹, KYLE MEDE³, TIMOTHY D. BRANDT¹⁰, OLIVIER GUYON^{6,11,8}, JULIEN LOZI⁶, NEMANJA JOVANOVIC¹², FRANTZ MARTINACHE¹³, TOMOYUKI KUDO⁶, MOTOHIDE TAMURA^{3,8,4}, N. JEREMY KASDIN¹⁴, TYLER GROFF¹⁵, JEFFREY CHILCOTE¹⁶, MASAHIKO HAYASHI⁴, MICHAEL W. MCELWAIN¹⁵, RUBEN ASENSIO-TORRES¹⁷, MARKUS JANSON¹⁷, GILLIAN R. KNAPP¹⁸, JUNGMI KWON³, AND EUGENE SERABYN¹⁹


Taichi Uyama

JSPS overseas research fellow

Caltech/IPAC, NASA Exoplanet Science Institute, NAOJ


Direct Imaging of Exoplanets

other methods: transit, radial velocity, microlensing, etc.

- Direct imaging (High-contrast imaging)
- sensitive to young and wide-orbit Jovian planets
- -> useful information for planet formation and evolution mechanisms
- smaller number of detections
- -> need more explorations and detailed characterizations

Flowchart of Direct Imaging

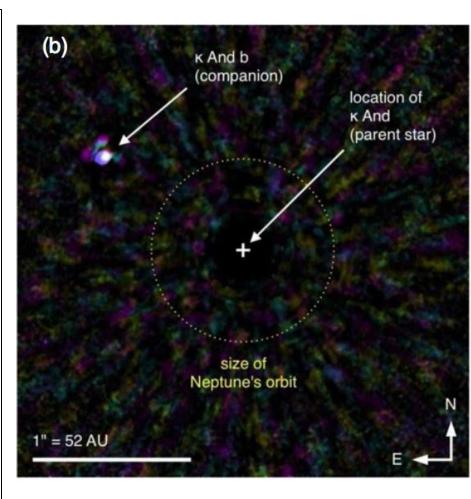
к And system

One of the first directly-imaged planets (Discovered by SEEDS; Tamura 2009)

age: ~40-50 Myr

distance: 50 pc

mass: ~13 M_J


Sp type: L0-L1

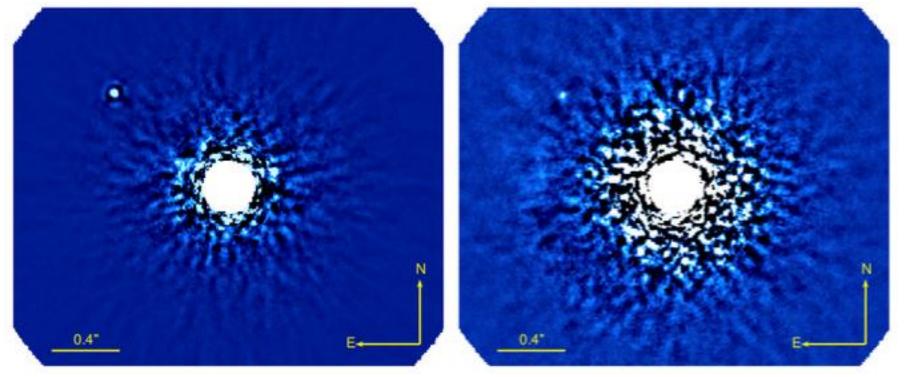
log (g): ~4.0-4.5?

 $T_{\rm eff}$: 1700-2000

- suggestions about formation mechanism
- gravitational instability
- similar separation to current location
- Little discussion of astrometry in the previous studies

references: Carson et al. (2013); Bonnefoy et al. (2014); Jones et al. (2016); Currie et al. (2018)

The first report of κ And b (Carson et al., 2013)


Observations and Results

ADI reduction conducted

Date (HST)	instrument	Band	$T_{\rm exp}$ [min]	Rotation Angle [deg]	remarks
2015-08-02	Subaru/HiCIAO+SCExAO	H	35.0	27.70	SCExAO engineering obs
2016-07-18	Subaru/HiCIAO+SCExAO	H	25.0	41.70	science obs
2016-07-18	Subaru/HiCIAO+SCExAO	Y	30.5	41.31	science obs for photometry
2018-11-01	Keck/NIRC2	$K_{ m s}$	10	3.70	science obs for astrometry

band	κ And A [mag]	κ And b [mag]		
H		15.18 ± 0.56 ^a		
Y	4.28 ± 0.09	16.60 ± 0.15		

a: bad *H*-band photometric references in both epochs

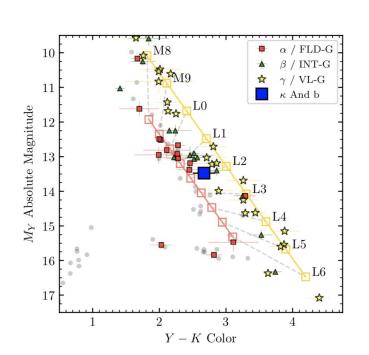
H-band (SNR~130)

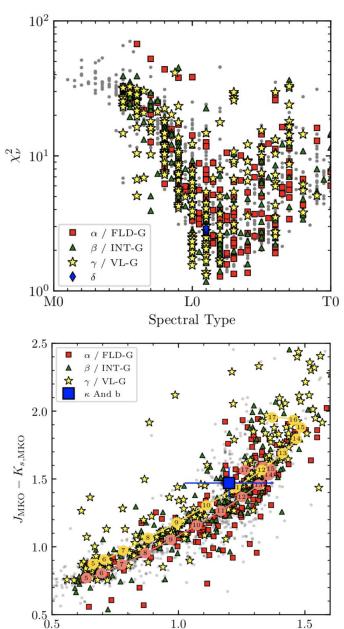
Y-band (SNR~10)

Photometry and Astrometry

Photometry

band	κ And A	κ And b	Ref.
Y [mag]	$4.28 {\pm} 0.09$	17.04 ± 0.15	\mathbf{a}
$J \; [{ m mag}]$	$4.26{\pm}0.04$	15.84 ± 0.09	b
$H [\mathrm{mag}]$	$4.31 {\pm} 0.05$	$15.01 {\pm} 0.07$	b
$K_{ m s} \; [{ m mag}]$	$4.32 {\pm} 0.05$	$14.37 {\pm} 0.07$	b
L' [mag]	$4.32 {\pm} 0.05$	13.12 ± 0.1	$_{\mathrm{c,d}}$
$NB_4.05~\mathrm{[mag]}$	$4.32 {\pm} 0.05$	13.0 ± 0.2	$^{\mathrm{d}}$
M' [mag]	$4.30 {\pm} 0.06$	$13.3 {\pm} 0.3$	$^{\mathrm{d}}$

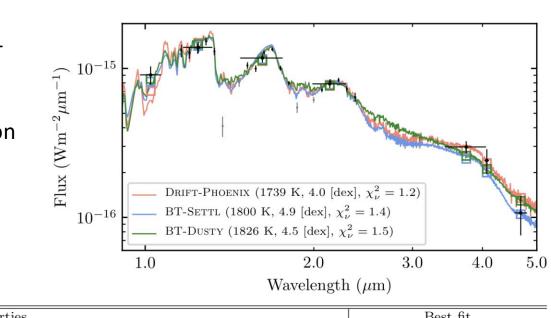

- a. This work
- b. Currie, Brandt, Uyama, et al. (2018)
- c. Carson et al. (2013)
- d. Bonnefoy et al. (2014)


Astrometry

Date (UT)	instrument	$\Delta RA ['']$	$\Delta \mathrm{Dec} \ ['']$	Ref.
2011-01-01	Subaru/AO188+HiCIAO	$0.884 {\pm} 0.010$	0.603 ± 0.011	С
2011-07-08	Subaru/AO188+HiCIAO	0.877 ± 0.007	0.592 ± 0.007	С
2012-11-03	Keck/NIRC2	$0.846 {\pm} 0.010$	$0.584 {\pm} 0.010$	b, d
2013-08-18	Keck/NIRC2	0.829 ± 0.010	$0.585 {\pm} 0.010$	b
2016-07-18	Subaru/SCExAO+HiCIAO	0.734 ± 0.008	0.599 ± 0.007	a
2017-09-05	Subaru/SCExAO+CHARIS	0.710 ± 0.016	$0.576 {\pm} 0.012$	Ъ
2017-12-09	Keck/NIRC2	0.699 ± 0.010	$0.581 {\pm} 0.010$	b
2018-11-01	Keck/NIRC2	$0.656 {\pm} 0.006$	$0.580 {\pm} 0.006$	\mathbf{a}

Empirical Comparisons with Spectral Libraries

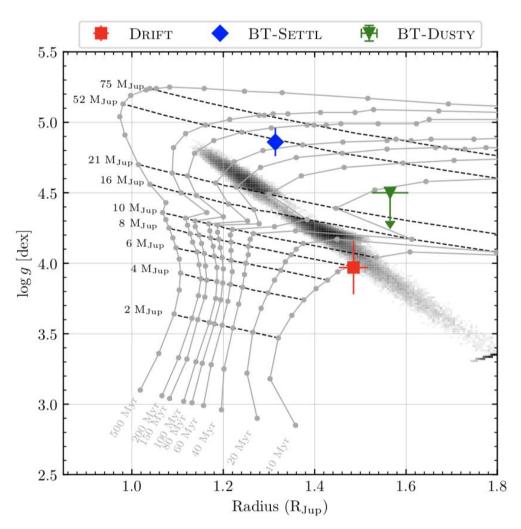
- Y(HiCIAO) and JHK(CHARIS)-bands are used
- *Empirical comparisons with spectral libraries: κ And b likely has a low surface-gravity
- Some best-fit objects (field-gravity objects) may have lower gravity than previously classified



 $Y_{
m HiCIAO} - J_{
m MKO}$

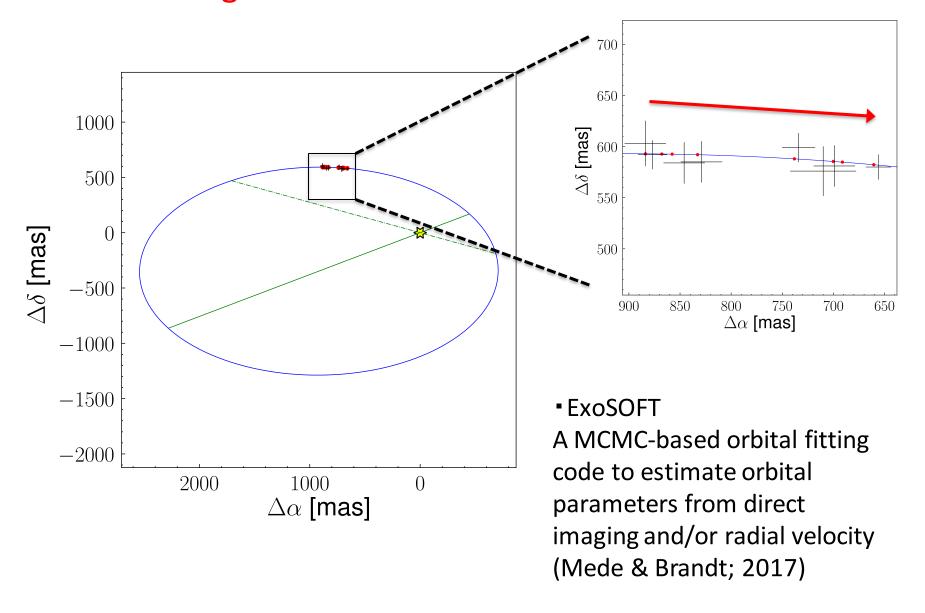
Atmospheric Modeling

- •spectrophotometric results between *Y-M'* bands
- A variety of models used for comparison
- •The best-fit 3 models: DRIFT-PHOENIX, BT-SETTL, BT-DUSTY

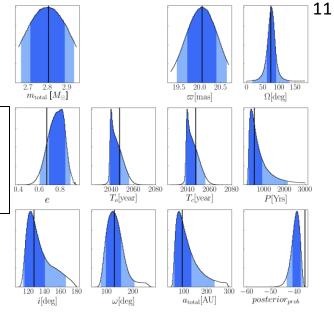


Model Properties							Bes	st fit		
Name	Ref.	Special Remark	$T_{ m eff}$	$\log g$	$\Delta T_{ m eff}$	$\Delta \log g$	$T_{ m eff}$	$\log g$	R	χ^2_{ν}
			(K)	[dex]	(K)	[dex]	(K)	[dex]	(R_{Jup})	
		Clear mode	els							
AMES-COND	a	• • •	1000 – 2400	2.5 – 6.0	100	0.5	2400	4.0	0.74	29.7
BT-Cond	र्व	• • •	1000 – 2200	4.0 – 5.5	100	0.5	2200	4.0	0.85	20.4
Burrows	С	•••	1000 – 2000	4.5 – 5.5	100	0.5	2000	4.5	0.90	53.9
		$Cloudy \ mode$	els							ľ
AMES-Dusty	a	•••	1000 – 2500	3.5 – 6.0	100	0.5	1800	5.0	1.19	3.62
BT-Dusty	ъ		1000 - 2400	4.5 – 5.5	100	0.5	1800	4.5	1.64	1.81
BT-Settl	ъ	Asplund et al. (2009) abundances	1000 – 2400	3.0 – 5.5	100	0.5	1900	4.5	1.23	2.80
BT-Settl	ъ	Caffau et al. (2011) abundances	1000 – 2400	3.5 – 5.5	50	0.5	1800	5.0	1.34	1.70
BT-Settl- 2015	b	•••	1200 – 2400	3.0 – 5.5	50	0.5	1750	5.5	1.37	3.49
BT-Settl-bc	Ъ	• • •	1100 – 2400	3.0 – 5.5	100	0.5	1800	4.0	1.30	2.99
Drift-Phoenix	đ	• • •	1000 – 2400	3.0 – 6.0	100	0.5	1700	4.0	1.57	1.66
Burrows	С	Nominal cloud model, $100\mu m$ modal size (E100)	1000 – 2000	4.5 – 5.5	50	0.1	1800	4.6	1.25	7.08
Burrows	e	Thick clouds, $4\mu m$ modal size (A4)	1800 – 2200	3.5 – 4.0	25 - 100	0.25	1900	4.0	1.23	6.39
Burrows	е	Thick clouds, $10\mu \text{m}$ modal size (A10)	1800 – 2200	3.6 – 4.0	100	0.1	2000	4.0	1.09	3.24
Bullons		Thick clouds, Topin moder size (1110)	1000 2200	0.0 1.0		0.1	2000			

a: Allerd et al. (2001), b: Allard et al. (2012), c: Burrows et al. (2006), d: Write et al. (2011), e: Currie et al. (2014)


Comparison with an Evolutionary Model (COND03)

- •The best-fit three models are compared with isochrones in terms of radius and surface gravity.
- •These models suggest different age and mass for κ And b
- The DTIFT-PHOENIX model (the best-fit one) implies a radius and gravity consistent with evolutionary model predictions of the age (t < 40 Myr)

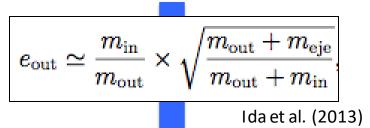

- Gray lines: Isochrones (COND 03; Baraffe et al. 2003)
- Black Contours: Measured luminosity of κ And b (Currie et al. 2018)

Orbital Fitting with ExoSOFT

Orbital Parameters of κ And b

- Eccentricity the first eccentric and wide-orbit planet
- orbital migration via planet-planet scattering?
- previous studies assumed on-site formation

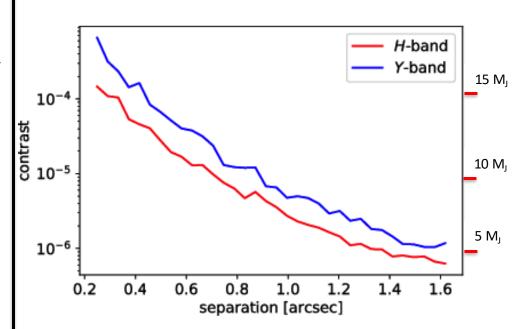
This work


Parameter	Median	68% confidence level	95% confidence level
$a_{\rm tot}$ [au]	103.6	[57.4, 133.4]	[50.3, 236.0]
P [yr]	631.1	[242.4, 900.4]	[198.6, 2148.9]
e	0.77	[0.69, 0.85]	[0.60, 0.90]
$i [\deg]$	130.0	[114.9, 140.0]	[112.6, 166.6]
$\omega \; [{ m deg}]$	130.7	[96.6, 155.4]	[77.0, 205.0]
$\Omega \ [\mathrm{deg}]$	76.5	[61.3, 90.5]	[16.4, 132.1]
T_0 [yr]	2044.1	[2038.4, 2047.9]	[2037.5, 2056.3]

		Bonnefoy et al. (2018)		Wang et a	al. $(2018)^a$	
	Parameter	GJ 504 b	HR 8799 b	HR 8799 c	HR 8799 d	HR 8799 e
c.f.	a _{tot} [AU]	44±11	$69.5^{+9.3}_{-7.0}$	$37.6^{+2.2}_{-1.7}$	$27.7^{+2.2}_{-1.7}$	$15.3^{+1.4}_{-1.1}$
C.1.	e	0.31 ± 0.15	0.15 ± 0.05	0.09 ± 0.04	0.15 ± 0.11	$0.13^{+0.06}_{-0.05}$
	$i [\deg]$	$137.8^{+12.9}_{-4.6}$	29^{+7}_{-8}	20^{+4}_{-5}	33 ± 4	31 ± 5

a: unconstrained model

Constraints on Planet-Planet Scattering


- Assumptions
- three planets with coplanar and circular orbits
- 2) one of them was ejected previously
- 3) the ejected one has smaller mass than κ And b
- these three objects have similar diameters

assuming m_{out} =13 M_J, e_{out} =0.77 \pm 0.08

ejected object $[M_{Jup}]$	inner object $[M_{Jup}]$
2	$13.2^{+1.9}_{-1.7}$
4	$12.2_{-1.6}^{+1.7}$
6	$11.3^{-1.6}_{-1.5}$
8	10.6 ± 1.4
10	$10.0^{+1.4}_{-1.3}$

■5σ contrast limits

- Mass limits
- 15 M_J, 12 M_J, 7 M_J at 12.5, 25, and 50 AU
- 15 M_J, 8-10 M_J, 3-5 M_J (converted mass limit from Currie et al. 2018)

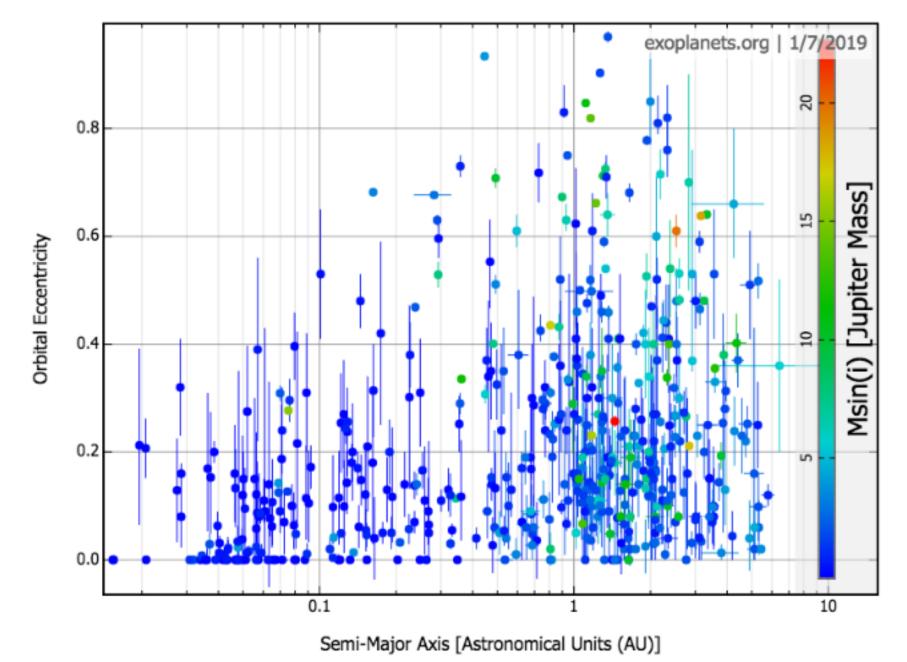
(assuming COND03 model and 47 Myr)

-> a potential inner planet is located at 25 AU or less

How to Detect/Constrain the Potential Inner Planet?

- Radial velocity
- $\sigma_{RV} \ge 1$ km/s (Hinkley et al., 2013; Becker et al., 2015)
 - -> κ And is not a suitable target for accurate radial velocity measurement
- Host-star astrometry
- a combination of *Gaia* and *Hipparcos*
- κ And is too bright for accurate acceleration estimation
- Future high-contrast imaging
- TMT enables better contrast
- better orbital fitting with more plots of κ And b over next 10 years

Continuing high-contrast imaging is better to constrain migration scenarios of κ And b.


Summary

This study shows a good example about how we characterize a directly-imaged planet

- New Data:
- SCExAO+HiCIAO YH-band and Keck/NIRC2 Ks-band results of k And b
- Empirical comparisons with spectral libraries
- suggestion of low surface gravity
- Atmospheric modeling
- the DRIFT-PHOENIX matches κ And b's SED between Y and M' bands
- the model implies a radius and gravity consistent with predictions of the system age (t < 40 Myr)
- Astrometry
- orbital fitting suggested a large eccentricity
- suggestion of planet-planet scattering?
- -> further exploration with TMT!

Auxiliary slides

Eccentricity Distributions of Reported Exoplanets

Used Relationships in ExoSOFT

Define parameters of A, B, F, and G as follows:

$$A = a_{ ext{tot}}[\cos(\Omega_2)\cos(\omega_2) - \sin(\Omega_2)\sin(\omega_2)\cos(i)]$$
 $B = a_{ ext{tot}}[\sin(\Omega_2)\cos(\omega_2) + \cos(\Omega_2)\sin(\omega_2)\cos(i)]$
 $F = a_{ ext{tot}}[-\cos(\Omega_2)\sin(\omega_2) - \sin(\Omega_2)\cos(\omega_2)\cos(i)]$
 $G = a_{ ext{tot}}[-\sin(\Omega_2)\sin(\omega_2) + \cos(\Omega_2)\cos(\omega_2)\cos(i)],$

as well as X(t) and Y(t)

$$X(t) = \cos(E(t)) - e$$
$$Y(t) = \sqrt{1 - e^2} \sin(E(t)),$$

where E(t) is given by

$$M(t) \equiv \frac{2\pi}{P}(t - T_0)$$

 $M(t) = E(t) - e \times \sin(E(t)).$

Finally relative positions of $\Delta\delta$ and $\Delta\alpha$ are provided

$$\Delta \delta = AX(t) + FY(t)$$

 $\Delta \alpha = BX(t) + GY(t)$