Radiation Hydrodynamics Simulations of Photoevaporating Protoplanetary Disks: Implications to Metallicity Dependence of Disk Lifetimes

Riouhei Nakatani

(RIKEN)

Collaborators: Takashi. Hosokawa, Naoki Yoshida, Hideko Nomura, Rolf Kuiper

Papers: Nakatani et al. (2018a,b)

Standard Scenario of Low-Mass Stellar-system Formation

Protoplanetary Disk (PPD)

Geometrically thin Keplerian disk

Young star + Disk

around a young star

Main components: Gas/Dust

 \rightarrow disk dispersal time characterizes planet formation timescale.

© R.Nakatani

Planetary system

V883 Orionis disk

TW Hydrae disk

The lifetimes have been estimated with IR observations.

*** Disk Fraction = (disk-bearing members in a cluster)
/ (total number of members)

Subaru NIR observations have revealed metallicity dependence in disk lifetimes.

Low Z environments may faster disk dispersal for some reason.

Significances of the metallicity dependence.

- << Lifetime planet formation >>
- Time limit to gaseous planet formation
- Set initial configuration
- Influence on chemical states
- << The metallicity dependence planet formation >>
- Suggest planet-formable environments
- Disk evolution/planet formation in general metallicity environments

Photoevaporation

- a disk-dispersing mechanism -

e.g., Bally & Scoville (1982); Shu et al. (1993), Hollenbach et al. (1994)

FUV: $(6 \text{ eV} \lesssim h\nu \lesssim 13.6 \text{ eV})$

EUV: $(13.6 \text{ eV} \lesssim h\nu \lesssim 0.1 \text{ keV})$

X-rays: $(0.1 \text{ keV} \lesssim h\nu \lesssim 10 \text{ keV})$

unbound not flow Photoevaporative flow

Surface gas heating

$$\frac{\text{(gravitational energy)}}{\text{(thermal energy)}} = \frac{GM_*}{rc_s^2} \lesssim 1$$

$$\Leftrightarrow r \gtrsim \frac{GM_*}{c_s^2} \sim 10 \text{ AU } \left(\frac{M_*}{M_{\odot}}\right) \left(\frac{T}{10^4 \text{ K}}\right)^{-1}$$

Typical mass loss rate (photoevaporation rate): $10^{-10}-10^{-8}\,{
m M}_{\odot}\,{
m yr}^{-1}$

Metallicity affects the disk opacity to FUV and X-ray.

	FUV	EUV	X-rays	
Photon energy	$6 \text{ eV} \le hv \le 13.6 \text{ eV}$	$13.6 \text{ eV} \le hv \le 100 \text{ eV}$	$0.1 \text{ keV} \le hv \le 10 \text{ keV}$	
Main absorber	Dust	Atomic hydrogen	Metal elements (≥ 0.3 keV)	
Penetrability	High	Low	High	
Metallicity dependence	Dependent	Independent	Dependent	

Our Aims:

- Understand metallicity dependence of mass-loss rates
 - Give implications to the observational lifetimes

We performed the first self-consistent rad.-hydro. simulations

	Hollenbach+ 94	Gorti+09	Owen+10	Ercolano +10	Wang+17	Nakatani +18a	Nakatani +18b
Hydrodynam ics	No	No	Yes	No	Yes	Yes	Yes
Radiative transfer	Yes	Yes	No	Yes	Yes	Yes	Yes
Thermal processes	Yes	Yes	No	Yes	Yes	Yes	Yes
(Detailed) Chemistry	No	Yes	No	Yes	Yes	Yes	Yes
FUV heating	No	Yes	No	No	Yes	Yes	Yes
EUV heating	Yes	Yes	No	Yes	Yes	Yes	Yes
X-ray heating	No	Yes	Yes	Yes	Yes	No	Yes
Dust IR transfer	No	Yes	No	No	No	Yes	Yes
Multi- metallicity	No	No	No	Yes	No	Yes	Yes

Photoevaporating Disk = Cold disk + Hot wind

(Nakatani +18a)

DB: Rz.vtr

Time=0

Thu May 23 16:40:42 2019

 $n_{\rm H} \, [{\rm cm}^{-3}]$ $y_{\rm H2}$ 0.25 $10^{8.5}$ 0.0 $v_{\rm p} \, [{\rm km/s}]$ $y_{\rm HII}$ 0.5 15.5 Color Scales

UV- & X-ray-heated region = Wind region

Optically thick region = Steady disk region

Photoevaporating disk Cold disk (~10 - 100 K) Hot winds ($> 10^3 \text{ K}$)

(Our simulations are in 2D spherical polar coordinates.)

FUV heating VS dust cooling at Wind "base" where $\tau_{\text{FUV}} \sim 1$.

Color Scales

We do find metallicity dependence

Photoevaporation rate is the highest at subsolar metallicities

Photoevaporation can yield the short lifetimes

> Summary

- 1. Motivation: Observational metallicity dependence of lifetimes.
- 2. Methods: Hydrodynamical simulations with radiative transfer and non-equilibrium chemistry to examine the metallicity dependence of photoevaporation.
- 3. Results: Photoevaporation rates has a peak at $Z \sim 10^{-1} Z_{\odot}$. X-rays strengthen the FUV heating in the extremely low-metallicity range.
- 4. Conclusion: Our model gives consistent lifetimes with the observed lifetimes. Our model predicts disks would have even longer lifetimes in the much lower metallicity environments $Z \le 10^{-2} Z_{\odot}$.