High-cadence transient surveys with Subaru/Hyper Suprime-Cam

Nozomu Tominaga (Konan Univ./Kavli IPMU)

22nd Nov 2019 Subaru 20th Anniversary

Outline

- High-cadence survey & data analysis
- A rapidly declining transient
- Rapidly rising transients
- Event rates of rapidly varying transients
- Summary

Timescale of transients

Data analysis for transient surveys

Transient finding system

- Hawaii observatory
 - CPU: 176 cores
 - Storage: 20TB
- Kavli IPMU
 - CPU: 1200 cores
 - Storage: 3.5PB
- Konan University
 - CPU: 800 cores
 - Storage: 500TB

The system is used for high-cadence surveys in openuse (survey and ToO) and SSP programs.

Web interface for intranight transients

Rapidly declining transient (NT+19, ApJ, 885, 13)

A rapid declining transient

Comparison of rest u-band LCs

Decline rate and color

 Shock breakout at stellar surface (NT+11)

 Cooling envelope (Tsvestkov+12)

 Shock breakout at stellar surface (NT+11)

 Cooling envelope (Tsvestkov+12)

 Shock breakout at stellar surface (NT+11)

 Cooling envelope (Tsvestkov+12)

 Shock breakout at stellar surface (NT+11)

 Cooling envelope (Tsvestkov+12)

Comparison with published theoretical models

A shock breakout at the stellar surface of a low-E SN explosion

Metallicity of the host galaxy is 0.1-0.3Zsun.

Rapidly rising transients (Tanaka, NT+16, ApJ, 819, 5)

Rapidly rising transients

Tanaka, NT+ 16; Drout+14; Gezari+15 Rising timescale (day mag-1)

Rate of rapidly varying transients

Event rate:
$$\,R=1/\tau\Omega V_{
m max}\,$$
 Schmidt 1968; Eales 1993

$$\tau V_{\text{max}} = \frac{1}{4\pi} \sum_{\text{field}} \int_0^{z_{\text{max}}} \max \left\{ \tau_{\text{tran}}, \frac{\tau_{\text{obs,field}}}{1+z} \right\} \frac{dV}{dz} dz$$

1 rapidly declining transient and 5 rapidly rising transients (|dm/dt|>1mag/day)

$$^{\sim}1 \times 10^{-4} \, /yr/Mpc^3$$
 $^{\sim}6 \times 10^{-5} \, (\tau/1day)^{-1} \, /yr/Mpc^3$ Tanaka, NT+16

c.f. CCSN rate: $(3-7) \times 10^{-4} / yr/Mpc^3$

High Cadence Transient Survey (HiTS) with CTIO/DECam (Forster+18) 26 rising transients (24 transients are rapid |dm/dt| > 0.2mag/day) Detection efficiency: 28 % for low M_{dot} , 72% for high M_{dot} 1/5 of CCSNe could have a shock breakout at the stellar surface

Summary

- High-cadence transient surveys are performed in openuse and SSP programs.
- The high-cadence survey can prove the final fates of massive stars. The HSC observation probes them at high redshift and low metallicity.
- Our survey found 1 rapidly declining and 5 rapidly rising transients. Declining transients are also important.
- The fractions are roughly consistent with those from HiTS with CTIO/DECam. However, it is still small statistics. We need to increase the number of sample.