SUBARU TELESCOPE 20TH ANNIVERSARY

2019 November 22nd

Doppler Tomographic Analysis for Planetary Orbital Precession of WASP-33b

Noriharu Watanabe (SOKENDAI/NAOJ)

Norio Narita
(Astrobiology Center)

Marshall C. Johnson (Las Cumbres Observatory)

Watanabe et al. 2019 Submitted

Exoplanets around Hot Stars

- * More than 4,000 exoplanets have been confirmed.
- * Confirmed planets around hot stars are few (~20 stars).
- * Most of the known planets around hot stars are hot Jupiters.

Feature of HJ around Hot Star

Wide range of projected spin-orbit obliquities

Features of Hot Star

♦ Hot stars rotate rapidly → Flattening themselves

Orbital Nodal Precession

- * This precession is caused by an interaction between a planet and a single flattened host star.
- Orbital nodal precession changes transit trajectory.
- Only two planets have been detected their nodal precession around each single star (Kepler-13Ab & WASP-33b). (Szabó et al. 2012) (Johnson et al. 2015) (Johnson et al. 2015)

Orbital Nodal Precession

Orbital Nodal Precession

- * This precession is caused by an interaction between a planet and a single flattened host star.
- * Orbital nodal precession changes transit trajectory.
- * Only two planets have been detected their nodal precession around each single star (Kepler-13Ab & WASP-33b).

 (Szabó et al. 2012) (Johnson et al. 2015)

WASP-33b

- * A hot Jupiter (Porb~1.2day) around an A-type (Teff~7430K) star
- * Misaligned near-polar orbit.
- * The host star rotates rapidly (VsinI ~90km/s) and exhibits pulsations. (Collier Cameron et al. 2010b)
- Nodal precession was detected by only 2 datasets (2008 & 2014)
 (Johnson et al. 2015)

Measure the precession more precisely using 2011 (HDS) data and previous ones.

research	J+15	This study	J+15
date	2008 Nov 12	2011 Oct 19	2014 Oct 4
instrument	TS23/HJST	Subaru/HDS	TS23/HJST
resolution	60,000	110,000	60,000
SNR@5000Å	140	160	280
# of spectra	13 (10 in transit)	35 (16 in transit)	21 (10 in transit)

Doppler Tomography (DT)

* To measure spin-orbit obliquity (λ) & impact parameter (b)

DT of WASP-33b

There are <u>a planetary shadow</u> and <u>pulsation components</u>

Line profile residuals

Fourier Filtering

* Fourier Filtering can extract only planetary shadow (Johnson et al. 2015)

inverse Fourier transform

Fitting

Measuring orbital parameters by MCMC fitting.

Result

date	2008 Nov 12	2011 Oct 19	2014 Oct 4
SNR	140	160	280
λ (deg)	-111.28 ^{+0.47} _{-0.48}	-114.01 ^{+0.22} _{-0.20}	-112.91±0.24
b	$0.2397^{+0.0040}_{-0.0039}$	0.1571±0.0020	$0.0856^{+0.0021}_{-0.0020}$
i_p (deg)	86.275 +0.070 -0.072	87.560±0.037	88.671 +0.034 -0.036
Ω (deg)	86.003 ^{+0.087} _{-0.091}	87.329±0.045	88.557 ^{+0.039} _{-0.045}
I (deg)	111.23 ^{+0.48} _{-0.47}	113.99 +0.20 -0.21	112.90±0.24

Ω: ascending node /: orbital inclination

 $\cos i_p = bR_s/a$ $\tan \Omega = -\sin \lambda \tan i_p$ $\cos I = \cos \lambda \sin i_p$

Precession with model

Fitting by weighted least square with long-term model.

parameter	This study	Previous Studies
J_2	(9.14±0.51)×10 ⁻⁵	(2.1 ^{+0.8} _{-0.5})×10 ⁻⁴ [I16]
İs	96 ⁺¹⁰ deg	142 ⁺¹⁰ ₋₁₁ deg [I16]
P precession	~840 years	~970 years [J+15]

(Iorio 2016)

i.e.
$$J_{2, sun}=2 \times 10^{-7}$$

J₂: stellar gravitational quadrupole moment (oblateness) i_s: angle between stellar spin axis and line of sight

- * WASP-33b's orbital nodal precession is faster
- * WASP-33 is more equator-on rotation and more spherical star

Precession with model

WASP-33b's precession has short-term variation.

or our measured uncertainties of inclinations are underestimated...

Future Work 1

* To clarify why the short-term change happens...

More follow-up observations of WASP-33b are needed.

Instrument	Resolution	Telescope	Location
HDS	110,000	Subaru 8.2m	Hawaii/US
HIDES	65,000	OAO 1.88m	Okayama/Japan

* We will get HIDES data this November.

Chance to See WASP-33b's Transit

- * Period during transiting the host star is only ~20% of whole precession period.
- * It is lucky to watch (detect) this transit.

Future Work 2

- * To search orbital nodal precession...
 - Focusing other misaligned HJs around hot stars e.g. KELT-9b, Kepler-13Ab, exoplanets found by TESS, etc
 - Revealing the trend of the ratio of period of transiting in front of the host star to precession period.
- with transit spectral data

Instrument	Resolution	Telescope	Location
HDS	110,000	Subaru 8.2m	Hawaii/US
HIDES	65,000	OAO 1.88m	Okayama/Japan

* with transit photometry to measure impact parameter

Instrument	# of bands	Telescope	Location
MuSCAT	3 (g, r, z)	OAO 1.88m	Okayama/Japan
MuSCAT2	4 (g, r, i, z)	TCS 1.52m	Tenerife/Spain

Summary

- * There are few exoplanets around hot stars (~20).
- Hot stars tend to have misaligned HJs and to rotate rapidly.
- * Thus, the system makes orbital nodal precession.
- We detected precise orbital nodal precession of WASP-33b
 - One of models did not fit our values.
 - WASP-33b transits in front of theist star for only ~20% of nodal precession period.

* Observing nodal precessions of hot Jupiters, WASP-33b, KELT-9b and so on, by high dispersion instrument and photometry camera.