HSC project #56

Properties of variability-selected AGNs in the HSC SSP transient survey in COSMOS

Mitsuru Kokubo (JSPS fellow, Tohoku Univ.)

M. Tanaka, Y. Kimura, M. Akiyama (Tohoku), M. Graham (Caltech), N. Yasuda (IPMU), T. Morokuma (Univ. of Tokyo), HSC transient working group.

Why variability-based AGN selection is important

- Almost all unobscured AGNs show aperiodic optical variability
 —> variability can be used to find AGNs in time-domain datasets
 - not affected by host galaxy flux contaminations
 <—> optical/MIR color selection can miss faint low-mass AGNs
 - growing importance in the coming era of LSST

HSC-SSP transient survey in COSMOS

(ref. Yasuda et al., 2019)

- Wide-field deep 5-band (grizy) time-domain survey in the HSC COSMOS field
- $i \sim 26.0/25.5$ mag per epoch in UD/D
 - <— detected transients/variables are mostly supernovae and unobscured AGNs with < 1 % Galactic variable star contamination</p>
- Main survey in **UD & D**: 2016 2017
 Additional data in **UD**: 2017 2019

Eyeball identification of supernovae

by Yasuda et al. 2019

- Reference image subtraction
 - -> 65387 transient candidates
- Visual inspection for 26988/65387
 active SNe candidates with positive flux & extended host galaxies
 - —> 1824 active SNe , 23491 Bogus, and 1534 AGNs as a by-product

HSC 16aasd
Reference
2017-01-23
Difference
Positive

HSC 16aaaa
Reference
2017-01-25
Difference
Negative

New

AGNs in "Negative flux" and "Point sources" remain unclassified

Reference

taken

in 2014

Difference

SNe

Eyeball identification of supernovae

Differnce flux (microly)

by Yasuda et al. 2019

- Reference image subtraction
 - -> 65387 transient candidates
- Visual inspection for 26988/65387
 active SNe candidates with positive flux & extended host galaxies
 - —> 1824 active SNe , 23491 Bogus, and 1534 AGNs as a by-product

SN II Difference **Positive** 1000 MID - 57700 2017-01-25 Difference Reference **Negative** HSC-G Reference New **Difference** taken in 2014

AGNs in "Negative flux" and "Point sources" remain unclassified

SNe

This work: systematic search for variable AGNs in the HSC COSMOS transient dataset

- A machine learning classifier is developed to separate AGNs from Bogus
 - **Input sample**:65387 (All) 1824 (SNe) = **63563** transient candidates
 - Training sample: visually-classified 1534 AGNs and 23491 Bogus
 - Input "features" for classification: defined by the 5-band light curves

Feature extraction & training a random forest classifier

- Random forest: ensemble classifier using multiple decision trees and random subset features
- Input = 48 features:
 each feature has a weak predictive power, but the combination provides a strong classifier

(scikit-learn)

Result: trained Random Forest AGN/Bogus classifier

- Our classifier
 - miss 11.15% of AGNs (false negative)
 - 0.26% contamination from Bogus (false positive)

Results: 3559 variability-selected AGNs

- 63563 transient candidates —> random forest classifier
 3559 variable AGNs
- **683**/3559 (19%) have spectroscopic redshifts (~50% in the UD)
- 1373 are in the original COSMOS field (Scoville+2007)
 - 6/1373 (0.4 % contamination) are stars according to COSMOS2015 catalog (Laigle+2016)

Results: 3559 variability-selected AGNs

Optical and IRAC MIR color-color diagram of the HSC variable AGNs

- A fraction of the variable AGNs have multi-band colors consistent with normal galaxies
 - low luminosity AGNs heavily contaminated by host galaxy light

Variability detection fraction of the Chandra X-ray sources

- 4.6 Ms Chandra COSMOS Legacy Survey (Civano+2016, Marchesi+2016)
 - 2760 X-ray source detected in hard 2-10 keV band including unobscured & obscured AGNs

L_X dependence of the variability detection fraction among the hard X-ray sources is roughly consistent with X-ray obscuration fraction and MIR covering factor
 —> supporting a receding torus (?)

Variable low BH mass AGN candidates in COSMOS

- Cross-match with Chandra X-ray (40) or VLA 3GHz radio (35) selected low mass AGN candidates in dwarf galaxies (Mezcua + 2018, 2019)
 - 4/40 X-ray, 1/35 radio dwarf AGN candidates are variable AGNs
 - —> Good targets for future deep spectroscopy for BH mass estimation to put constraints on BH seed formation mechanisms

Summary

- We constructed a statistical variability-selected AGN sample in COSMOS: 3559 AGNs at z = 0 4, i = 19 25 mag
- Variability-based AGN selection is a powerful tool to picked up otherwiseundetected low-luminosity (low mass) AGNs buried under the host galaxy light

Future prospects

- Good targets for Subaru/PFS etc.
 - broad lines —> low BH mass AGNs
- Proposing additional HSC observations in COSMOS
- SXDF transient survey (2019 Sep. —-)

(see also T. Yamada's talk for a different variability detection approach)

