Subaru Telescope 20th Anniversary
-Optical & Infrared Astronomy for the Next Decade-Nov. 17 - 23 2019, Hawaii

Masashi Omiya, IRD-SSP team 1. Astrobiology Center (ABC), NINS 2. NAOJ

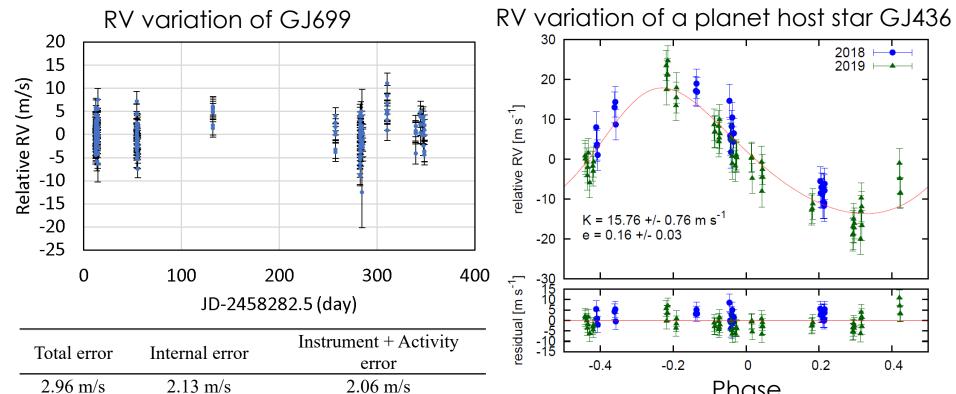
Precise radial velocity survey of late-M dwarfs in IRD-SSP: Observation status

InfraRed Doppler for the Subaru telescope Subaru Strategic Program

Goals of IRD-SSP survey

- Exploring habitable-zone(HZ) Earth-like planets
 - Earth-mass planets of P < 100 d</p>

- Uncovering population of planets beyond snow line
 - Giant planets of P < 1000 d beyond the slow line

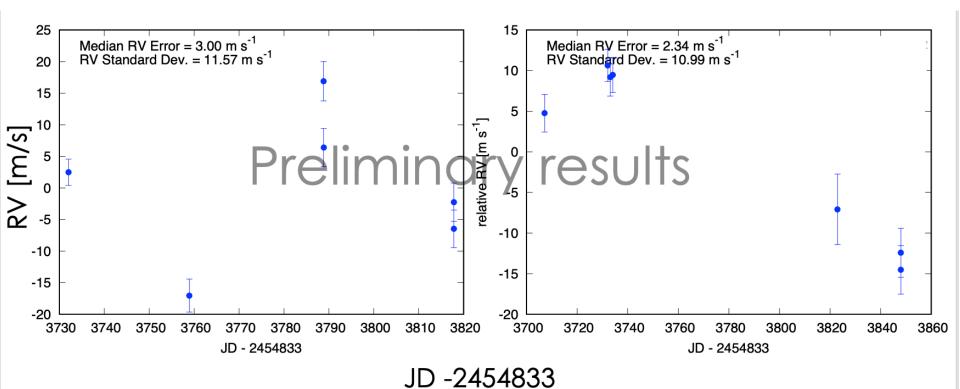

- Uncovering population of close-in low-mass planets
 - Super-earths of P < 300 d</p>

Goals of \$19A observation

- RV stability test
 - RV standard stars (GJ699, GJ1002, Teegarden's star)
 - Planet harboring star (GJ436)

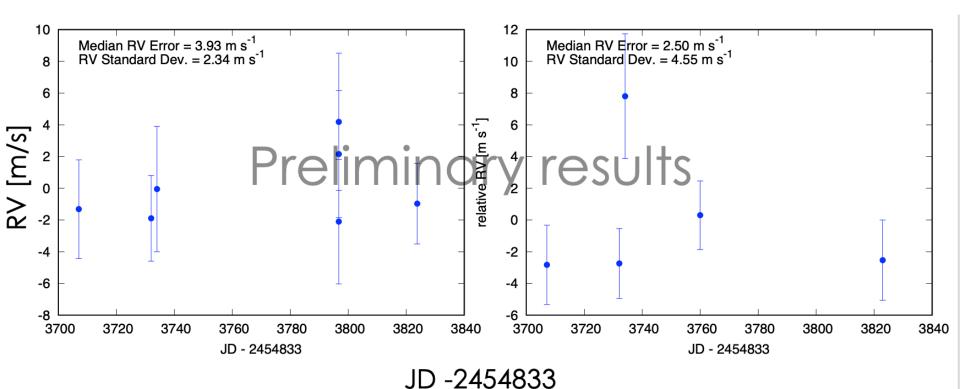
- Screening for target candidates
 - Long period binary (Visual binary)
 - Spectroscopic binary with double line (SB2)
 - Rapidly rotating (active) stars
 - Spectroscopic binary with single line (SB1)

RV stability test using standard stars



20	-		T	201 201	8 ————————————————————————————————————
ي 10 ق	-	1			-
relative RV [m s ⁻¹]	-				_
10 relati	_		⊥ ↓	#	-
-20	K = 15.76 _ e = 0.16 +	+/- 0.76 m /- 0.03	s	± ± *	_
. -30	ı		ı	ı	
residual [m s ⁻¹] אביב סיססיסיסיבי	- <u>+</u>	 ★ ★ ★		 	<u> </u>
sidua 17-	<u> </u>	Ī <u></u>	***	1	
<u> </u>	-0.4	-0.2	0	0.2	0.4
			Phase		

	IRD	Knutson et al. 2014	Trifonov et al. 2018
		HIRES	HARPS, HIRES, CARMENES
K (m/s)	15.76 ± 0.76	17.01 ± 0.54	17.38 ± 0.17
e	0.163 + 0.033 - 0.026	0.1495 + 0.016 - 0.0097	0.152+0.009-0.008
w (degree)	326 +17-13	336 + 12 - 11	325.8+5.4-5.7
Number of data points	90	113	638


RV analysis of sample stars

- We performed RV analysis of 11 stars with 4 time observation.
 - Target candidates: 5/11 stars
 - Planet candidates (moderate or jitter): 3/11 stars
 - RV trend (long-period planets?) : 2/11 stars

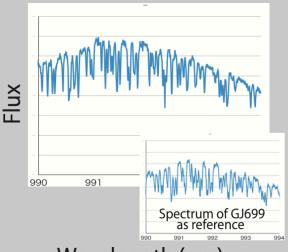
RV analysis of sample stars

- We performed RV analysis of 11 stars with 4 time observation.
 - Target candidates: 5/11 stars
 - Planet candidates (moderate or jitter): 3/11 stars
 - RV trend (long-period planets?) : 2/11 stars

Screening to exclude unsuitable stars

AO imaging

IRD FIM images (with AO188) of visual binary

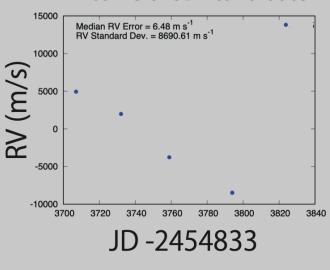


AO images taken by IRD
Fiber Injection Module (FIM)

We found 4 visual binarys in the observations S19A.

Spectral shape

IRD one order spectrum of double line? star


Wavelength (um)

Quicklook of IRD spectra

We found 2 stars with double lines or line broadning

RV observations

RV curve of SB1 candidate

4 RV data points

1

We checked RV variations and found 1 SB1.

IRD-SSP START

Summary

- □ IRD observation started in 2017
 - IRD first light: Aug. 2017 Spectrograph) Feb. 2018 (all)
 - IRS-SSP: START in 2019 Feb., END in 2024
- □ IRD-SSP → Large Radial Velocity(RV) survey of late-M dwarfs using Subaru + IRD
 - Sample: \sim 50 late-M dwarfs (M4-M7, inactive, 0.1-0.25 M_{SUN} , <20pc)
 - Detection : >50 planets & >2 Earth-like planets in Habitable zoon
- The proposal was accepted, started to perform preliminary results!
 - ☐ If you are interested in IRD-SSP, please join us!
 - Please contact to my e-mail address (omiya.maashi@nao.ac.jp)
 - Please check our proposal on web