Photometric Classification of the HSC Transients through Machine Learning

Nov. 22, 2019
Ichiro Takahashi
Kavli IPMU

CREST(JST) collaboration (PI Naoki Yoshida):

Japan Science & Technology: CREST JPMHCR1414

Nao Suzuki, Naoki Yasuda, HSC transient WG, NTT Team,
ISM (Institute of Statistics and Math) Team, Tsukuba Team

Increase of discovered supernovae

In recent years, The number of discovered supernovae has been rapidly increasing because of advances in observation technology.

- The Dark Energy Survey (DES, Ongoing) : \sim 3, 000 SNIa over 5 years
- Large Synoptic Survey Telescope (LSST): ~ 10⁵ SNIa each year

HSC SSP Transient Survey in COSMOS 2016 – 2017

HSC-SN16atc	HSC-SN16nrf	HSC-SN16qod	HSC-SN17bifw
2016-11-25 HSC-SN17biwr	2016-11-25 HSC-SN17bizo	2016-11-25 HSC-SN17bpmb	2016-11-25 HSC-SN17cqsg
2016-11-25 HSC-SN17dipf	2016-11-25 HSC-SN17dlhn	2016-11-25 HSC-SN17dpsc	2016-11-25 HSC-SN17dsfo
2016-11-25	2016-11-25	2016-11-25	2016-11-25

- Overview: Yasuda et al. 2019
- 6 months from Nov. 2016
- 52 times obs. (g, r, i, z, Y)
- 1824 active SNe
 - 58 objects at z > 1
- Follow-up observation :
 Keck/VLT/Gemini/HST

SN la Cosmology using Subaru/HSC

Supernova type classification

- Many detected supernova (100 newly in several week for HSC)
- We need to select follow-up targets quickly and accurately
 - Multiple types of supernovae -> only type la
 - Follow-up at the peak
- We developed a classifier using machine learning

Follow-up Observation

Subaru/FOCAS Spectrum

Subaru/HSC (Optical)

Improvement of classifier

- Preparing for the next survey
- Multi-class classification(Ia, Ibc, II)
- Validation using PLAsTiCC data
 - Photometric LSST Astronomical Time-Series Classification Challenge
 - Competition @ Kaggle: Sep. 28 Dec. 17, 2018
 - Test data: 3.5 million samples, Training data: 8000
 - 15 class (SNe, AGN, variables, micro-lensing)
- Apply to HSC transient survey 2016 data

Create learning dataset

- Hundreds of thousands of simulated light curves
- Using SNANA and PLAsTiCC templates
- Ia, Ibc and Type II

Classifier

- DNN
- Input photometric data directly
- Output probability of each type
- Only for fixed observation schedule
- Use DDF for PLAsTiCC data validation

Validation using PLAsTiCC DDF data

2 class AUCs

2 class Confusion Matrix

Normalized confusion matrixn, abs-mag scaled-flux w-mixup, accuracy:0.979

Kappa coefficient: 0.957

Validation using PLAsTiCC DDF data

3 class Confusion Matrix

Normalized confusion matrixn, abs-mag scaled-flux w-mixup, accuracy:0.953

Kappa coefficient: 0.916

Apply to HSC data

2class, True label: SALT2 LC fit

All labeled SNe (1540/1824)

Comparison with PLAsTiCC 1st prize classifier

PLAsTiCC 1st prize classifier

Normalized confusion matrixn, PLAsTiCC-1st, accuracy:0.923

Kappa coefficient: 0.842

Our classifier

Normalized confusion matrixn, abs-mag scaled-flux w-mixup, accuracy:0.979

Kappa coefficient: 0.957

Classification performance against number of inputs

la probability transition along the supernova phase

Summary

- We tried the classification by machine learning to classify supernovae which have increased rapidly in recent years.
- The classification results of the prototype classifier became one of the criteria for selecting follow-up targets in the HSC transient survey 2016.
- After the HSC survey, we improved the classifier by adopting PLAsTiCC templates and optimizing the classifier model.
- The improved classifier classifies type Ia supernovae with 97% accuracy for the PLAsTiCC DDF dataset, and has a classification performance of about 0.9 in AUC for actual HSC survey data.
- We are now in the middle of another HSC transient survey and are classifying the actual supernovae again with this improved classifier.