Search for Planets like Earth around Late-M Dwarfs:
 Precise Radial Velocity Survey with IRD

PI: Bun'ei Sato (Tokyo Institute of Technology)
 Co-PI: Nagayoshi Ohashi (NAOJ, Subaru)

E. Akiyama ${ }^{1}$, W. Aoki 2, C. Beichman ${ }^{3}$, T. Brandt 4, G. Cataldi ${ }^{5}$, C. Clergeon ${ }^{5}$, T. Currie ${ }^{5}$, R. Dong ${ }^{6}$, Y. Fujii ${ }^{7,8}$, H. Fujiwara ${ }^{5}$, A. Fukui 2, H. Genda ${ }^{7,8}$, T. Groff ${ }^{9}$, O. Guyon ${ }^{5,10,11}$, D. Hall 31, H. Harakawa ${ }^{2}$, J. Hashimoto ${ }^{2,11}$, Y. Hayano ${ }^{2}$, M. $\mathrm{Hayashi}^{2}$, K. G. HeŁminiak ${ }^{12}$, T. Henning ${ }^{13}$, T. Hirano ${ }^{8}$, K. Hodapp ${ }^{31}$, Y. $\mathrm{Hori}^{2,11}$, Y. Ikeda^{14}, S. Inutsuka ${ }^{24}$, H. T. Ishikawa ${ }^{21}$, M. Ishizuka ${ }^{15}$, H. Izumiura ${ }^{2}$, S. Jacobson ${ }^{31}$, M. Janson ${ }^{17}$, N. Jovanovic ${ }^{23}$, E. Kambe ${ }^{2}$, H. Kawahara ${ }^{15}$, T. Kodama ${ }^{15}$, Y. Koizumi ${ }^{8}$, E. Kokubo ${ }^{2}$, M. Konishi ${ }^{2}, 11$, T. Kotani ${ }^{2,11}$, T. Kudo ${ }^{2}$, T. Kurokawa ${ }^{2,11}$, N. Kusakabe ${ }^{2,11}$, M. Kuzuhara ${ }^{2,11}$, J. Kwon ${ }^{16}$, C. Lee ${ }^{5}$, J. Livingston ${ }^{15}$, M. Machida ${ }^{28}$ T. Matsuo ${ }^{27}$, D. Mawet 23, M. Mcelwain 9, V. Meadows ${ }^{29}$, E. Mieda ${ }^{5}$, T. Mizuki ${ }^{16}$, J. Morino ${ }^{2}$, T. Nagata ${ }^{20}$, T. Nakagawa ${ }^{16}$, T. Nakajima ${ }^{2,11}$, N. Narita ${ }^{15}$, J. Nishikawa ${ }^{2,11,21}$, S. Nishiyama ${ }^{18}$, H. Nomura ${ }^{8}$, M. Ogihara ${ }^{2}$, D. Oh^{25}, M. Omiya ${ }^{2,11}$, S. Oshino ${ }^{2}$, T. Pyo^{5}, E. Serabyn ${ }^{3}$, M. Sitko 19, H. Suto ${ }^{2,11}$, R. Suzuki ${ }^{2}$, Y. Takagi ${ }^{5}$, H. Takami ${ }^{2}$, T. Takarada ${ }^{8}$, N. Takato ${ }^{2}$, M. Tamura ${ }^{2,11,15}$, Y. Tanaka ${ }^{30}$, H. Terada ${ }^{2}$, R. A. Torres ${ }^{17}$, E. L. Turner ${ }^{22}$, A. Ueda ${ }^{2}$, T. Usuda ${ }^{2}$, T. Uyama ${ }^{15}$, S. Vievard ${ }^{5}$, J. Wang ${ }^{23}$, J. Wisniewski ${ }^{26}$, and Y. Yang ${ }^{21}$

[^0]
Summary

- InfraRed Doppler instrument (IRD)
- A high-dispersion ($\mathrm{R}=70,000$) near-infrared spectrograph for Subaru telescope
- Currently RV precision of $\sim 2 \mathrm{~m} / \mathrm{s}$ is achievable for M dwarfs
- IRD-SSP
- Aiming at detecting earth-mass ($\sim 1-3 \mathrm{M}_{\text {earth }}$) planets in habitable zone around late-M dwarfs, and unveiling planet population in wide range of mass and orbit around late-M dwarfs
- We expect to find ~ 60 planets in 60 sample stars by 5 -year (175 nights; 35 nights/year) survey.
- The first-two-year survey (19A-20B; 70 nights) is now officially approved.
- Observations have been conducted almost every month since this February.
- The first screening observation is now ongoing.

Overview of the IRD instrument

GJ 436 (M3V)

RV precision and stability

- Long-term monitoring of Barnard's star (GJ699; M4V)

	Total error	Internal error	Instrument + activity error
All data	$4.1 \mathrm{~m} / \mathrm{s}$	$1.8 \mathrm{~m} / \mathrm{s}$	$3.7 \mathrm{~m} / \mathrm{s}$
Selected data	$2.7 \mathrm{~m} / \mathrm{s}$	$1.8 \mathrm{~m} / \mathrm{s}$	$2.0 \mathrm{~m} / \mathrm{s}$

RV monitoring of planet-host stars

51 Peg

Spectral type	G2IV	M3V
Planet mass ($\left.\mathbf{m}_{\mathbf{p}} \mathbf{s i n} \mathbf{i}\right)$	$0.466 \mathrm{M}_{\text {Jup }}$	$21.36 \mathrm{M}_{\text {Earth }}$
Period	4.23	2.644
	55.4 ± 1.4 (IRD)	16.4 ± 1.0 (IRD)
$\mathbf{K}(\mathbf{m} / \mathbf{s})$	54.93 ± 0.18 (Birkby et al. 2017)	17.38 ± 0.17 (Trifonov et al. 2018)

Purposes and goals of IRD-SSP

- Purposes
- Detecting earth-mass ($\sim 1-3 M_{\text {Earth }}$) planets in habitable zone around nearby late-M dwarfs for future characterization
- Understanding planet formation and evolution (e.g. orbital migration) across snow line by unveiling planet distribution in wide range of mass and orbit around late-M dwarfs
\square Goals
- Detecting a habitable-zone earth-mass planet around a late-M dwarf
- Unveiling distribution of
- earth-mass planets in $\mathrm{P}<100 \mathrm{~d}$
- super-earths in $\mathrm{P}<300 \mathrm{~d}$
- giant planets in $\mathrm{P}<1000 \mathrm{~d}$ across slow line

Sample

$\square D<25 p c, M=0.08-0.25_{\odot}, J<11.5$, no Ha emission
$\Rightarrow 150$ stars were selected by low-resolution spectroscopy
\square Double-line spectroscopic binaries and rapid rotators will be screened out by initial observations with IRD

- Best 60 stars will be selected for IRD survey

Simulation

Slow migration (Type-I)

Fast migration (Type-I)

- We expect to find ~ 60 planets in 60 stars by 175-nights observations.
- The number of the expected planets depend on adopted theoretical models of planet formation and evolution.

Summary of February - July 2019

- Allocated nights
- 2/18(2nd),19(2nd), $20(2 n d), 21(2 n d), 22(2 n d)$, 23(2nd), 24(2nd)
- 3/21(2nd), 22(2nd), 23(2nd)
- 4/17(full), 18(2nd)
- 5/18(1), 19(2), 20(2), 22(f), 24(1), 25(1), 26(1)
- 6/15(f), 16(15), 17(15),
$18\left(2^{\text {nd }}\right), 19\left(2^{\text {nd }}\right), 20\left(2^{\text {nd }}\right)$,
$21\left(2^{n d}\right), 26\left(2^{\text {nd }}\right)$,
- 7/11(1st), 14(2nd)
- Cumulative allocated nights
- 16.5 nights from S19A
- Rough success rate
- ~77\% (12.7/16.5nights)

Current progress of observation
observed
stars
stars observed once 28
stars observed twice 16
stars observed 3 times 16
stars observe >3 times 11

Numbers of Allocated nights and results in S19A

Month	Feb.	March	April
Allocated	3.5 nights	1.5 nights	1.5 nights
Observed	0.5 nights	~ 1.5 nights	~ 1.5 nights
Monith	May	June	July
Allocated	4 nights	4.5 nights	1 nights
Observed	3.7 nights	~ 4 nights	1.5 nights

IRD Screening: Planet candidates?

- Moderately large ($\sigma \sim 12 \mathrm{~m} / \mathrm{s}$) RV variations

IRD Screening: AO images

- To check existence of visual companions in the images of IRD-FIM
- e.g. A companion with contrast ratio 1:7 = M4: M7
- Angular separation $=0.2^{\prime \prime}$, distance $17.7 \mathrm{pc} \rightarrow 3.5 \mathrm{AU}(\mathrm{P} \sim 13.5 \mathrm{yr})$

IRD Screening: Spectral shape

From HR spectra we also check
Activity indicators (line shape, Pachen, He I Metallicity

double lines binary?

IRD Screening: Spectroscopic binary

IRD Screening: Target candidates

- NOT visual binary
- NOT spectroscopic binary
- Rotation is slow

Long term RV monitor to search for planets

- Small RV jitter

Summary

- InfraRed Doppler instrument (IRD)
- A high-dispersion ($\mathrm{R}=70,000$) near-infrared spectrograph for Subaru telescope
- Currently RV precision of $\sim 2 \mathrm{~m} / \mathrm{s}$ is achievable for M dwarfs
- IRD-SSP
- Aiming at detecting earth-mass ($\sim 1-3 \mathrm{M}_{\text {earth }}$) planets in habitable zone around late-M dwarfs, and unveiling planet population in wide range of mass and orbit around late-M dwarfs
- We expect to find ~ 60 planets in 60 sample stars by 5 -year (175 nights; 35 nights/year) survey.
- The first-two-year survey (19A-20B; 70 nights) is now officially approved.
- Observations have been conducted almost every month since this February.
- The first screening observation is now ongoing.

[^0]: 1. Hokkaido University; 2. NAOJ; 3. JPL/Caltech; 4. UC Santa Barbara; 5. Subaru Telescope; 6. University of Victoria; 7. ELSI; 8. Tokyo Institute of Technology; 9. NASA Goddard; 10. University of Arizona; 11. Astrobiology Center, NINS; 12. Nicolaus Copernicus Astronomical Center; 13. MPIA; 14. Photocoding; 15. University of Tokyo; 16. ISAS/JAXA; 17. Stockholm University; 18. Miyagi University of Education; 19. Space Science Institute; 20. Kyoto University; 21. SOKENDAI; 22. Princeton University; 23. Caltech; 24. Nagoya University; 25. National Meteorological Satellite Center; 26. University of Oklahoma; 27. Osaka University; 28. Kyushu University; 29. University of Washington; 30. TUAT; 31. University of Hawaii, IfA
