Search for Planets like Earth around Late-M Dwarfs: Precise Radial Velocity Survey with IRD

PI: Bun'ei Sato (Tokyo Institute of Technology) Co-PI: Nagayoshi Ohashi (NAOJ, Subaru)

E. AKIYAMA¹, W. AOKI², C. BEICHMAN³, T. BRANDT⁴, G. CATALDI⁵, C. CLERGEON⁵, T. CURRIE⁵, R. DONG⁶, Y. FUJII^{7,8}, H. FUJIWARA⁵, A. FUKUI², H. GENDA^{7,8}, T. GROFF⁹, O. GUYON^{5,10,11}, D. HALL³¹, H. HARAKAWA², J. HASHIMOTO^{2,11}, Y. HAYANO², M. HAYASHI², K. G. HEŁMINIAK¹², T. HENNING¹³, T. HIRANO⁸, K. HODAPP³¹, Y. HORI^{2,11}, Y. IKEDA¹⁴, S. INUTSUKA²⁴, H. T. ISHIKAWA²¹, M. ISHIZUKA¹⁵, H. IZUMIURA², S. JACOBSON³¹, M. JANSON¹⁷, N. JOVANOVIC²³, E. KAMBE², H. KAWAHARA¹⁵, T. KODAMA¹⁵, Y. KOIZUMI⁸, E. KOKUBO², M. KONISHI^{2,11}, T. KOTANI^{2,11}, T. KUDO², T. KUROKAWA^{2,11}, N. KUSAKABE^{2,11}, M. KUZUHARA^{2,11}, J. KWON¹⁶, C. LEE⁵, J. LIVINGSTON¹⁵, M. MACHIDA²⁸, T. MATSUO²⁷, D. MAWET²³, M. MCELWAIN⁹, V. MEADOWS²⁹, E. MIEDA⁵, T. MIZUKI¹⁶, J. MORINO², T. NAGATA²⁰, T. NAKAGAWA¹⁶, T. NAKAJIMA^{2,11}, N. NARITA¹⁵, J. NISHIKAWA^{2,11,21}, S. NISHIYAMA¹⁸, H. NOMURA⁸, M. OGIHARA², D. OH²⁵, M. OMIYA^{2,11}, S. OSHINO², T. PYO⁵, E. SERABYN³, M. SITKO¹⁹, H. SUTO^{2,11}, R. SUZUKI², Y. TAKAGI⁵, H. TAKAMI², T. TAKARADA⁸, N. TAKATO², M. TAMURA^{2,11,15}, Y. TANAKA³⁰, H. TERADA², R. A. TORRES¹⁷, E. L. TURNER²², A. UEDA², T. UYAMA¹⁵, S. VIEVARD⁵, J. WANG²³, J. WISNIEWSKI²⁶, AND Y. YANG²¹

 Hokkaido University; 2. NAOJ; 3. JPL/Caltech; 4. UC Santa Barbara; 5. Subaru Telescope; 6. University of Victoria; 7. ELSI; 8. Tokyo Institute of Technology; 9. NASA Goddard; 10. University of Arizona; 11. Astrobiology Center, NINS; 12. Nicolaus Copernicus Astronomical Center; 13. MPIA; 14. Photocoding; 15. University of Tokyo; 16. ISAS/JAXA; 17. Stockholm University; 18. Miyagi University of Education; 19. Space Science Institute; 20. Kyoto University; 21. SOKENDAI; 22. Princeton University; 23. Caltech; 24. Nagoya University; 25. National Meteorological Satellite Center; 26. University of Oklahoma; 27. Osaka University; 28. Kyushu University; 29. University of Washington; 30. TUAT; 31. University of Hawaii, IfA

Summary

- InfraRed Doppler instrument (IRD)
 - A high-dispersion (R=70,000) near-infrared spectrograph for Subaru telescope
 - Currently RV precision of ~2 m/s is achievable for M dwarfs

IRD-SSP

- Aiming at detecting earth-mass (~1-3M_{earth}) planets in habitable zone around late-M dwarfs, and unveiling planet population in wide range of mass and orbit around late-M dwarfs
- We expect to find ~60 planets in 60 sample stars by 5-year (175 nights; 35 nights/year) survey.
- □ The first-two-year survey (19A-20B; 70 nights) is now officially approved.
- Observations have been conducted almost every month since this February.
- The first screening observation is now ongoing.

Overview of the IRD instrument

GJ 436 (M3V)

July, 2018

RV precision and stability

Long-term monitoring of Barnard's star (GJ699; M4V)

	Total error	Internal error	Instrument + activity error
All data	4.1 m/s	1.8 m/s	3.7 m/s
Selected data	2.7 m/s	1.8 m/s	2.0 m/s

XSN~170

RV monitoring of planet-host stars

Purposes and goals of IRD-SSP

Purposes

- Detecting earth-mass (~1-3M_{Earth}) planets in habitable zone around nearby late-M dwarfs for future characterization
- Understanding planet formation and evolution (e.g. orbital migration) across snow line by unveiling planet distribution in wide range of mass and orbit around late-M dwarfs

Goals

- Detecting a habitable-zone earth-mass planet around a late-M dwarf
- Unveiling distribution of
 - earth-mass planets in P<100 d</p>
 - super-earths in P<300 d</p>
 - □ giant planets in P<1000 d across slow line

Sample

- □ D<25pc, M=0.08-0.25_☉, J<11.5, no Ha emission
 - → 150 stars were selected by low-resolution spectroscopy
- Double-line spectroscopic binaries and rapid rotators will be screened out by initial observations with IRD
- Best 60 stars will be selected for IRD survey

Simulation

■ We expect to find ~60 planets in 60 stars by 175-nights observations.

The number of the expected planets depend on adopted theoretical models of planet formation and evolution.

Summary of February – July 2019

Allocated nights

- 2/18(2nd), 19(2nd), 20(2nd), 21(2nd), 22(2nd), 23(2nd), 24(2nd)
- 3/21(2nd), 22(2nd), 23(2nd)
- 4/17(full), 18(2nd)
- 5/18(1), 19(2), 20(2), 22(f), 24(1), 25(1), 26(1)
- 6/15(f), 16(1st), 17(1st), 18(2nd), 19(2nd), 20(2nd), 21(2nd), 26(2nd)
- 7/11(1st), 14(2nd)
- Cumulative allocated nights
 - 16.5 nights from \$19A
- Rough success rate
 ~77% (12.7/16.5nights)

Current progress of observation

	observed stars
stars observed once	28
stars observed twice	16
stars observed 3 times	16
stars observe >3 times	11

Numbers of Allocated nights and results in S19A

Month	Feb.	March	April
Allocated	3.5 nights	1.5 nights	1.5 nights
Observed	0.5 nights	~1.5 nights	~1.5 nights
Month	May	June	July
Allocated	4 nights	4.5 nights	1 nights
			i ngine

IRD Screening: Planet candidates?

□ Moderately large (σ ~12m/s) RV variations

JD -2454833

IRD Screening: AO images

- To check existence of visual companions in the images of IRD-FIM
- e.g. A companion with contrast ratio 1:7 = M4 : M7
 - Angular separation = 0.2", distance 17.7pc → 3.5AU (P~13.5yr)

IRD Screening: Spectral shape

IRD Screening: Spectroscopic binary

IRD Screening: Target candidates

- NOT visual binary
- NOT spectroscopic binary
- Rotation is slow
- Small RV jitter

Summary

- InfraRed Doppler instrument (IRD)
 - A high-dispersion (R=70,000) near-infrared spectrograph for Subaru telescope
 - Currently RV precision of ~2 m/s is achievable for M dwarfs

IRD-SSP

- Aiming at detecting earth-mass (~1-3M_{earth}) planets in habitable zone around late-M dwarfs, and unveiling planet population in wide range of mass and orbit around late-M dwarfs
- We expect to find ~60 planets in 60 sample stars by 5-year (175 nights; 35 nights/year) survey.
- □ The first-two-year survey (19A-20B; 70 nights) is now officially approved.
- Observations have been conducted almost every month since this February.
- The first screening observation is now ongoing.