HI Tomographic Survey in the SSA22 field (SSA22-HIT)

Ken Mawatari (Osaka Sangyo Univ),
T. Otsuka (Tohoku), T.Yamada (JAXA), T.Hayashino (Tohoku), A.K. Inoue (Osaka Sangyo Univ), K.G.Lee (Berkley), S. Yamanaka (NAOJ), N.Kashikawa (NAOJ), N.Tejos (UCSC), D.Schlegel (UCSC), J.X.Prochaska (UCSC), Y.Matsuda (NAOJ), J.Hennawei (Max Planck), I.Iwata (NAOJ), Y.Tamura (Nagoya), H. Umehata (Open Univ)
The SSA22 field

200Mpc (comoving)

Density excess of LBG, DRG, SMG, LAB (Steidel+03, Matsuda+04, Kubo+13, Umehata+15, etc)

Highest density “proto-cluster”

LAE “group”

LAE “voids”

HI survey area of this work
Study of Gas LSS in the high-z Universe

(1) Gas in-/outflow between IGM and Galaxies are fundamental phenomena in the galaxy formation/evolution.

(2) Large Scale Structure (LSS) survey via galaxies and gas is a hot topic in the next surveys (e.g., Subaru/PFS).

Gas can be investigated via absorptions in the background objects’ spectra.
HI Tomography (HIT) survey with Keck/DEIMOS

Panoramic survey of both HI and galaxies at z = 2.5 – 5.5

5 nights in S15B, 2 nights in S16A, and 4 nights in S16B were awarded for **Subaru-Keck time exchange**.
We got additional 2 nights in S15B in UC time.

Targets are
~500 LBGs with $i' = 24$-25.5 mag.

Data was taken for the 6 masks so far.
- 600ZD (R~1500)
- $\lambda = 4000 – 9000\text{Å}$

6 masks in the **SSA22** field
(including the prominent proto-cluster at $z=3.1$)
Main Science (1) Galaxy-Gas spatial correlation

It’s not clear whether HI gas distribution align with galaxy distribution.

While some simulations predict positive correlation on ~ 10 Mpc scale (Cai+15, Stark+14), our recent observational work suggests no correlation.

Comparison between observations and simulations will be needed to understand HI-gal (no) correlation.

Higher resolution 3D map from HIT
Main Science (2) CGM HI & metal abs halo

CGM halo can be investigated by measuring HI/metal absorptions as a func of impact parameters.

Main Science (3) LSS survey with z > 4 galaxies

Previous photo-z analysis showed a redshift peak at z > 5. There may be another proto-cluster.
Current data Summary

<table>
<thead>
<tr>
<th></th>
<th>Integration time [hour] in total</th>
<th>Integration time [hour] in 2015</th>
<th>2σ depth @5000Å per resolution [AB]</th>
<th>Goal depth: ETC 2σ per resolution in 4 h</th>
<th>Nspecz / Nobj</th>
</tr>
</thead>
<tbody>
<tr>
<td>mask01</td>
<td>2</td>
<td>2</td>
<td>24.6</td>
<td>25.8</td>
<td>12/86</td>
</tr>
<tr>
<td>mask02</td>
<td>2</td>
<td>2</td>
<td>24.8</td>
<td>25.8</td>
<td>27/78</td>
</tr>
<tr>
<td>mask03</td>
<td>7.8</td>
<td>2</td>
<td>24.7</td>
<td>25.8</td>
<td>23/84</td>
</tr>
<tr>
<td>mask04</td>
<td>8</td>
<td>2</td>
<td>24.8</td>
<td>25.8</td>
<td>28/86</td>
</tr>
<tr>
<td>mask05</td>
<td>7.9</td>
<td>3.6</td>
<td>24.9</td>
<td>25.8</td>
<td>27/93</td>
</tr>
<tr>
<td>mask06</td>
<td>13.5</td>
<td>4.6</td>
<td>25.1</td>
<td>25.8</td>
<td>35/86</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>152/513</td>
</tr>
</tbody>
</table>

- Shallower than expected....
- 124 are newly determined

We show the results from data taken in 2015. Final products are not ready.
Redshift determination

- Redshift histogram for each category

Only objects with reliable specz (quality flag = A or B) are shown.
Redshift determination

Sky distribution of A and B objects

Surface density of $3.2 < z < 3.7$ gals

$= 0.17$ arcmin$^{-2}$

corresponding to

~ 1 Mpc spatial resolution

for $z=3.1$ HI tomography
We need to smooth spectra or to stack of plural sight-line spectra, even after merging the 2nd year data.
Summary

- IGM tomography in the SSA22 proto-cluster region is an unique survey.

- We spent 13 Keck/DEIMOS nights to survey a ~ 50 x 30 Mpc2 area in the z ~ 3 Universe.

- Achieved depth is ~0.8 mag shallower than expected from ETC. This is not due to the weather condition.

- The data reduction is still on-going, but the first year data show that (1) the data quality is enough for specz confirmation of background galaxies (for tomography) but (2) their S/N in the DA range is too low.

- We plan to complete merging the all data (1st + 2nd year) and redshift determination this Jan ~ Mar.