The NIR spectroscopy of the galaxies in the SSA22 protocluster at z=3.09

1. Astronomical Institute, Tohoku University, 2. Institute of Astronomy, University of Tokyo, 3. Subaru Telescope, NAOJ, 4. Research Center for Space and Cosmic Evolution, Ehime University, 5. Chile Observatory, NAOJ, 6. Koyama Astronomical Observatory, Kyoto Sangyo University, 7. Research Center for Neutrino Science, Graduate School of Science, Tohoku University, 8. Department of Mathematical and Physical Science, Japan Women’s University, 9. Plasma Nanotechnology Research Center, Nagoya University, 10. Institute for Cosmic Ray Research, University of Tokyo

2012/1/17 Subaru UM
Abstract

• We conducted the **NIR spectroscopy** of the K-band selected galaxies with $z_{\text{phot}} \sim 3.1$ in the SSA22 protocluster at $z=3.09$.

• 67 objects were observed by using Subaru MOIRCS. We used newly developed “VPH-K” grism.

• Redshifts of about half of the targets were successfully confirmed and a number of them are certainly at $z \approx 3.09$.

• We also confirmed the counterparts of the LABs and the AzTEC 1.1um submm source.
1. Introduction

1.1 The SSA22 protocluster at $z=3.09$

Significant high density region of the LBGs & LAEs at $z=3.09$

The density excess of the LABs, (Matsuda et al. 2004) and ASTE/AzTEC sub-mm sources (Tamura et al. 2009) are also reported.

Observed with MOIRCS JHKs-bands for 111.8arcmin2, with $K_{AB}<24$

The sky distribution of the LAEs (Yamada et al. 2012)
1.2 MOIRCS imaging observations

We obtained the photometric redshifts from SED fittings and found the surface number density excess of the K-band selected the galaxies with photometric redshift $z_{\text{phot}} \sim 3.1$.

Spectroscopic follow up is needed!
2. Observations

Targets: K-band selected galaxies with z_phot=2.6-3.6

Date: 2012/9/29-30 (Full), 2012/10/27-28 (half nights)

Instrument:

- Subaru telescope MOIRCS, Multi-Object Spectroscopy (MOS).
- Using newly developed “VPH-K” grism and HK500 grism. Slit width = 0.7", 0.8"
- 2 half and 2 full (4'x7') MOS masks were used.

Seeing: 0.4"~0.7"

Exposure time: Each masks are observed for 3.6-5.5h

Data reduction: MCSRED (Tanaka et al.) was used.
VPH (Volume Phase Holographic)-K grism

- This was the first scientific observation with VPH-K grism
- Spectral coverage ~1.9-2.3μm
- R~1900(0”.7 slit) and ~1700 (0”.8 slit).
- High efficiency

Ebizuka et al. (2011)

For the galaxies at z=3.09, [OIII]5007 Å shifted to ≈2.05μm
Targets

- $K_{\text{AB}}<24$ and $z_{\text{phot}}=2.6-3.6$
- We preferentially observed DRGs ($J-K>1.4$), HEROs ($J-K>2.1$) and Spitzer MIPS 24um sources
- Totally 67 objects were observed (12 of which are filler objects with $z_{\text{phot}} \neq 2.6-3.6$)

Shaded regions were observed with VPH-K grism
3. Result

3.1 The redshift distribution

The emission lines ([OIII]5007 Å or Hα) were detected in 32/67 of the targets. (26 / 55 of zphot=2.6-3.6 & 6 /12 of fillar objects)

20/32 objects are at z~3.09!

Red: zphot=2.6-3.6
Green:fillar objects. e.g.,MIPS sources, DRGs
Black dash: All confirmed.

z=3.09
3.2 Sky distributions of the objects

Gray; No detection
Red; $z_{\text{spec}}=3.03-3.15$
Blue; $z_{\text{spec}}<3.03$
or $z_{\text{spec}}>3.15$
Cross; Density peak of the LAEs
3.2 The examples
With VPH-K grism (top; z_spec=3.100, middle z_spec=2.328

With HK500 grism (z_spec=3.047)

Effective to avoid OH airglow emissions. Resolving kinematics
4. Discussion
4.1 Comparison with the objects confirmed from optical spectroscopy

Top left: Stellar mass (K<24),
Top right: J-K color v.s. K-band mag
Bottom left: SFR_UV.corr,
of the galaxies with z≈3.09 in the SSA22 field
from this work (red) and other works
(Confirmed by optical spectroscopy, green).

*Stellar mass & SFR are estimated from
SED fitting with u*BVRizJHK & Spitzer IRAC

Massive and Red objects are confirmed
4.2 counterparts of LABs

4.2.1 LAB01

We confirmed one K-band counterpart of LAB01.

\[z_{\text{spec}} = 3.099 \]

\[M_{\text{star}} = 9.1 \times 10^{10} \pm 4.8 \times 10^9 \, M_{\odot} \]

\[\text{SFR}_{\text{MIPS24um}} = 1250^{+2000}_{-850} \, M_{\odot} / \text{yr} \]

Sum of the stellar mass of the confirmed galaxies

\[M_{\text{star}} = 2.1 \times 10^{11} \pm 2.1 \times 10^{10} \, M_{\odot} \]

This object was also confirmed by Mclinden et al. (2013, AAS)
But we also detected H\(\beta \) line.

Black circles are with \(z_{\text{phot}} = 2.6-3.6 \)
4.2.2 LAB16 & LAB30

LAB16

$z_{\text{spec}} = 3.073$

$M_{\text{star}} = 6.4 \times 10^{10} \pm 2.1 \times 10^9 M_{\odot}$

$\text{SFR}_{\text{MIPS24um}} = 2350^{+3770}_{-1590} M_{\odot}/\text{yr}$

LAB30

$z_{\text{spec}} = 3.069$

$M_{\text{star}} = 5.4 \times 10^{10} \pm 6.3 \times 10^9 M_{\odot}$
4.3 counterpart of sub-mm source

We also confirmed one of the counterparts of AzTEC 1.1um sub-mm source (SFR>1000Mo/yr).

\[z_{\text{spec}} = 3.087 \]

\[M_{\text{star}} = 1.15 \times 10^{11} \pm 3.1 \times 10^{9} M_{\odot} \]

\[L_{8-32\text{keV}} = 8.1 \times 10^{43} \text{ ergs s}^{-1} \]

MIPS24um and X-ray source. We observed but didn't detect any emission lines.

The sky distribution of the ASTE/AzTEC Sub-mm sources (Tamura et al. 2009)

\[z_{\text{spec}} = 3.087 \]

\[z_{\text{phot}} = 2.6-3.6 \]
5. Conclusion

- We successfully confirmed K-selected galaxies with $z_{\text{phot}} \sim 3.1$ to be the members of the SSA22 protocluster.

- We also confirmed the K-band counterparts of LABs and AzTEC sub-mm source.

- This was the first time to confirm such many galaxies from [OIII]5007 Å at $z \sim 3$.

6. Future Works

- We're going to investigate the properties of [OIII]5007 Å and Hβ emission lines.

- In this observation, we observed 1/6 of our K-selected candidates of the galaxies in the SSA22 protocluster. Further observations are needed to reveal the whole picture of the protocluster.