Asymmetric impacting on the Moon and its dependence on debiased NEA models

Takashi Ito (CFCA, National Astronomical Observatory, Tokyo, Japan), Renu Malhotra (LPL, The University of Arizona, Tucson, AZ)

Motivation: Rayed crater distribution on the Moon

- Synchronized rotational & orbital motion of satellites (1:1 commensurability)
- More craters around apex
- Typically observed on Galilean satellites of Jupiter
- Confirmed on the Moon
- More craters around apex
- Young, rayed craters
- Small v_{relative} (vs. v_{impact})
- Strong asymmetry
- Large v_{relative}
- Weak asymmetry
- Potential constraints on the origin of the projectiles

This poster - Confirmation of the lunar crater asymmetry by numerical integrations
- w/ debiased NEA populations
- w/ steady-state NEA model

Numerical integration [1]: Initial conditions and method

- Debiased NEA population (A)
 - Bottke et al. (2002, Icarus, 156, 398-413)
 - 18,000 particles
 - 5 source regions
 - J_2 resonance
 - 1:1 MMR
 - Mars-crossers
 - outer MB
 - TNO disk

- Debiased NEA population (B)
 - Morbidelli (2000, unpublished)
 - 18,000 particles
 - 5+2 source regions
 - J_2 resonance
 - 1:1 MMR
 - Mars-crossers
 - outer MB
 - TNO disk

- "Raw" NEA-like particle population (C)
 - Apollo, Amor, Aten-like
 - 10,000 particles as of 2010. July
 - ~7,000 original + clones
 - No debiasing procedure, mostly \approx18

Steady-state NEA model

- In many previous studies
 - NEA flux decreases
 - Impact distribution changes
 - Along with orbit distribution change

- NEA flux ~ constant over 3 Gyr
 - From lunar crater record
 - Constant supply of particles

- Steady-state NEA flux in a numerical model
 - (v_{impact}, v_{relative}, r_1)

- Reproduction of steady-state NEA flux

Encounter statistics at Earth's r_1

- Encounter velocity
 - v_{impact}
 - v_{relative}
 - v_{relative} distribution

- Encounter position
 - r_1

Impact statistics on the Moon

- Relative fraction

Asymmetric v_{impact} distribution

- v_{total} (~1 km/s) < v_{impact} (~22 km/s)

Concentration

- Leading: δ larger
- Trailing: δ smaller

Impact velocity on the Moon

- Debiased population (A,B) \rightarrow larger
- Daw NEA population (C) \rightarrow smaller

Impact angle

- Quite isotropic for both the Earth and the Moon

- Debiased population (A,B)
 - Imp., v_{impact}, r_1, ... , ...
 - Retrograde r_1
 - Positive v_{impact}
 - Rel. fraction
 - Good to make an orbital distribution function

More particles for the Moon

- Generate many particles ("clones") from the orbital distribution function
- N_r clones
- N_r particles

Orbital integration of Earth + Moon + sun + 10^2 "clones" \rightarrow Numerical integrations [2] (Total N_{clone} \rightarrow 1019)

Need more particles for the Moon

- ~3,000 test particles at ~2AU
- ~100 collisions on the Earth
- Some collisions on the Moon
- Statistically meaningful?

Asymmetric impact distribution

- Leading: δ larger
- Trailing: δ smaller

Impact velocity on the Moon

- Debiased population (A,B) \rightarrow larger
- Daw NEA population (C) \rightarrow smaller

Impact angle

- Quite isotropic for both the Earth and the Moon

Conclusion

- Both debiased models (A,B) yield similar results in terms of the cratering asymmetry
- Weaker asymmetry than the actual rayed crater record, indicating the presence of more "slower" objects
- Raw NEAs have lower (v_{impact}) - but still consistent with the rayed crater record
- Rayed crater data should be updated (Kaguya, ...), as well as the NEA orbital distribution (Pan-STARRS, ...)

Search area by Motoda & Furumoto (2003, GP&G, 226, 313-322)
Total 222 rayed craters ($D>$5km) detected

Map of rayed crater data

Figures

- Reproduction of steady-state NEA flux

- "Raw" NEA-like particle population (C)
 - Apollo, Amor, Aten-like
 - 10,000 particles as of 2010. July
 - ~7,000 original + clones
 - No debiasing procedure, mostly \approx18