Subaru + CIAO + AO
Direct Observations of
Bridged Twin Protoplanetary Disks in a Young Multiple Star

Outlines
- Introduction
- Binary formation
- Targets
- Instruments
- Observation
- Data Reduction
- Results and Discussions
- Observational Results
- 2D simulational Results
- Comparisons
- Geometrical & optical informations
- Summary

Satoshi Mayama (NAOJ / JSPS research fellow)
Motohide Tamura (NAOJ), Tomoyuki Hanawa (Chiba Univ.),
Tomoaki Matsumoto (Hosei Univ.), Miki Ishii, Tae-Soo Pyo,
Hiroshi Suto, Takahiro Naai, Tomoyuki Kudo, Jun Hashimoto &
Masahiko Hayashi (NAOJ)

Observational Studies of
Protoplanetary disks in a Multiple star

Protoplanetary disk
- natural by-products of stellar evolution
- precursors of planet formation

Formation a single star \rightarrow advanced
Formation of binaries \rightarrow unexplained mystery
If a forming star has close companions,
\rightarrow PP disk may be influenced.

- Single (Sun) : Minority
- Multiple : Majority (more than 70%)
 \rightarrow studying star & planet formation in multiple system
 \rightarrow general processes of star and planet formation
History of Young Binary Formation Studies

Accretion from circumbinary disk to circumstelle disks

Observations

![Image of a disk](image1)

Theoretical Studies

- SPH model
 - Atyunowicz & Lubow (1996)
 - Lata & Bonell (1997)
 - Guarnieri & Key (2002)
 - Ochi, Sugimoto & Hantawa (2005)

A circumbinary disk can supply mass to the circumstellar disks through a gas stream that penetrates the disk gap without closing it.

This infilling material through the spiral arm plays an important role in the formation of circumstellar disks. However, circumbinary disks and spiral arms have never been directly resolved to date.

No observational data enables a comparison with theoretical models of mass accretion in binary systems, particularly inner area of young binary. Observations and theoretical studies have proceeded independently.

- High resolution + High contrast observations
- Resolve inner areas of young binaries
- Subaru + Coronagraph + AO
- Report one of our result.

instrument: CIAO+AO

- CIAO (Coronagraphic Imager with Adaptive Optics): instrument for imaging faint objects close to much brighter objects
- AO: obtain sharpen images
- Coronagraph: obtain high contrast images of faint circumstellar matter around a bright central object

![Diagram of CIAO and Coronagraph](image2)
Observations

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Telescope</td>
<td>Subaru Telescope</td>
</tr>
<tr>
<td>Camera</td>
<td>CIAO+AO</td>
</tr>
<tr>
<td>Wavelength</td>
<td>1.65(μm)</td>
</tr>
<tr>
<td>Pixel scale</td>
<td>0.0213/pixel</td>
</tr>
<tr>
<td>Field of View</td>
<td>22"</td>
</tr>
<tr>
<td>Diameter of Occulting Mask</td>
<td>0".8</td>
</tr>
<tr>
<td>FWHM</td>
<td>0".1</td>
</tr>
</tbody>
</table>

Method, Results and Discussions are deleted as they include unpublished data.
Summary

1. We present the direct image of an interacting binary protoplanetary system. Both circumprimary and circumsecondary disks were successfully resolved, the first such observation for a young stellar object.

2. The binary system exhibits a bridge of infrared emission connecting the two disks and a long spiral arm extending from the disk.

3. Bridge corresponds to gas flow and a shock wave caused by the collision of gas rotating around the primary and secondary stars.

4. Fresh material streams along the spiral arm, confirming the theoretical proposal that gas is replenished from a circummultiple reservoir.

5. Our observations provide the first direct image that enables a comparison with theoretical models of mass accretion in binary systems. The observations of this binary system provide a great opportunity to test and refine theoretical models of star and planet formation in binary systems.

Thank You!!!!