Study of dwarf satellites with WFMOS

Sakurako Okamoto (University of Tokyo)
Questions

Q1. Relation between the present satellites and the M.W.

Q2. Mass contents and profiles of dwarf galaxies

Q3. Low mass threshold to be a galaxy? \((10^7?, 10^5?)\)

Q4. Star formation and evolution of each galaxies with the different conditions and environments.
Questions

Q1. Relation between the present satellites and the M.W.

Q2. Mass contents and profiles of dwarf galaxies

Q3. Low mass threshold to be a galaxy? \((10^7?, 10^5?)\)

Q4. Star formation and evolution of each galaxies with the different conditions and environments.
dwarf satellites around M.W.

- Most numerous system in the Universe
- Building block of massive galaxy in ΛCDM
dwarf satellites in LCDM

(z=0.0)

255 x 191 kpc

(http://www.ucolick.org/~diemand/vl/movies.html)
Are “classical” dSphs the building blocks?

A lack of metal-deficient $[\text{Fe/H}] < -3$ is common in the “classical” dSph. The progenitors of the “classical” dSph appear to have been different from the building blocks!!

systematically lower than the M.W. halo stars

$[\alpha/\text{Fe}]$ timescale:
SFH / IMF / SNe / mixing ...

(Helmi+2006)
Ultra faint dwarf galaxies

- **Ursa Major I**
 - Distance: 96kpc

- **Bootes I**
 - Distance: 60kpc

- **Canes Venatici I**
 - Distance: 220kpc

References

(SO+2008)
Are UFdS galaxies the building blocks?

- UFdS has stars of $[\text{Fe/H}] < -3$
- MDF of UFdS reaches nearly as low as that of M.W. halo

Sample is restricted to the inner part of a galaxy...

\[(\text{Kirby+2008})\]
Questions

Q1. Relation between the present satellites and the M.W.

Q2. Mass contents and profiles of dwarf galaxies

Q3. Low mass threshold to be a galaxy? ($10^7\,\text{?}, 10^5\,\text{?}$)

Q4. Star formation and evolution of each galaxies with the different conditions and environments.
common mass scale for the satellite galaxies?

DM halo $\sim 10^6 M_\odot$?

(Diemand+2007; Via Lactea I)

the mass scale,
the lumpiness,
the extent of
Stars & Dark Matter

(Diemand+2007; Via Lactea I)

(Strigari+2008)

(Mw satellites)

Mass < 0.6 kpc [M_\odot]

(Strigari+2007; Via Lactea I)

(Strigari+2008)

galaxy $> 10^7 M_\odot$?
Questions

Q1. Relation between the present satellites and the M.W.

Q2. Mass contents and profiles of dwarf galaxies

Q3. Low mass threshold to be a galaxy? \((10^7?, 10^5?) \)

Q4. Star formation and evolution of each galaxies with the different conditions and environments.
<table>
<thead>
<tr>
<th>Name</th>
<th>M_V[mag]</th>
<th>D[kpc]</th>
<th>$\mu_0 \nu$</th>
<th>Main Pop</th>
<th>SFH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sgr</td>
<td>-13.4</td>
<td>24</td>
<td>25.4</td>
<td>inter-age</td>
<td>Extended SF</td>
</tr>
<tr>
<td>Fornax</td>
<td>-13.0</td>
<td>138</td>
<td>23.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leo I</td>
<td>-11.9</td>
<td>250</td>
<td>22.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sculptor</td>
<td>-10.7</td>
<td>79</td>
<td>23.7</td>
<td>old</td>
<td>distinct-pop</td>
</tr>
<tr>
<td>Leo II</td>
<td>-9.6</td>
<td>204</td>
<td>24.0</td>
<td>inter-age</td>
<td>Extended SF</td>
</tr>
<tr>
<td>Carina</td>
<td>-9.3</td>
<td>105</td>
<td>25.5</td>
<td>inter-age</td>
<td>Episodic SF</td>
</tr>
<tr>
<td>Sextans</td>
<td>-9.5</td>
<td>87</td>
<td>26.2</td>
<td>old</td>
<td>Simple SF ?</td>
</tr>
<tr>
<td>UMi</td>
<td>-8.9</td>
<td>66</td>
<td>25.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Draco</td>
<td>-8.8</td>
<td>82</td>
<td>25.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CVn I / UMa I</td>
<td>-7.9 / -6.8</td>
<td>220 / 94</td>
<td>28.2 / -</td>
<td>old ?</td>
<td>Simple SF ?</td>
</tr>
<tr>
<td>Her / Boo I</td>
<td>-6.0 / -5.9</td>
<td>140 / 60</td>
<td>- / 28.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leo IV / CVn II</td>
<td>-5.1 / -4.8</td>
<td>160 / 150</td>
<td>- / -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leo V / UMa II</td>
<td>-4.3 / -3.8</td>
<td>180 / 30</td>
<td>27.5 / -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coma / Boo II</td>
<td>-3.7 / -2.3</td>
<td>44 / 42</td>
<td>- / 27.7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Survey Plan

stage I) LRS & HRS of 3 nearby dSph in the M.W.
 radial velocity / metallicity, abundance patterns

stage II) LRS of all satellites around the M.W.
 radial velocity / metallicity -> DM halo, substructure

extra) LRS of the satellites around M31 ? (>21mag...)
Stage 1) 3 nearby dSph of M.W.

Low Resolution Mode (17mag < V < 21mag, R~5000, 3 hour/filed) :
- RGB candidates in the 9FoV of Sextans/Draco/Ursa Minor
 - distributions of metallicity (CaII T 8150-8850A), and radial velocities
 - membership confirmation (→ TMT era)
 - mass scale & lumpiness of the dSphs (M=10^7?, 10^5?)
 - whether the dark matter halo extend beyond the edge of their main stellar distributions

High Resolution Mode (V < 17mag, R~40000) :
- bright RGB stars in the 3 dSphs
 - derive individual elemental abundances (cf. Galactic halo stars)
 - the evolutorial history of stellar components
 - the nucleosynthesis in a faint, low-mass, low-metallicity galaxy
 - spatial variation of abundance pattern?
Stage 1) 3 nearby dSph of M.W.

Targets: 9FoV of Sextans, Draco, Ursa Minor

- Sextans dSph <1kpc (~1FoV)
- RGB(>21mag): 1100
- HB: 650

e.g.) Sextans dSph <1kpc (~1FoV)
RGB(>21mag): 1100
HB: 650
Stage II) all dwarf satellites of M.W.

Low Resolution Mode (17mag < V < 22mag, R~1800) :

RGB stars in all satellites & streams around the M.W.

• membership confirmation (HSC→WFMOS→TMT)
• tracing the DM halo of the “classical” & “UFdS” galaxies (60kpc-220kpc from M.W.)
• mass scale & lumpiness of the DM halo (10^7? 10^5?) with a wide range of luminosities and distance from M.W.

The nature of dark matter sub-halo from the visible satellites
Answers to the questions

Q1. Relation between the present satellites and the M.W.
 stage I: comparison of detailed abundances of dSph with M.W.
 stage II: comparison of the metallicity distribution with M.W.

Q2. Mass contents and profiles of dwarf galaxies
 stage I+II: tracing dark matter halo of dwarf galaxies

Q3. Low mass threshold to be a galaxy? (10^7?, 10^5?)
 stage II: dark matter contents of UFdS galaxies (with SC/HSC study)

Q4. Star formation and evolution of each galaxies with the different conditions and environments.
 stage I+II: metallicity and detailed abundances (with SC/HSC study)