Galactic Archaeology with the WFMOS high-resolution mode

Wako Aoki
National Astronomical Observatory of Japan
Galactic Archaeology with the WFMOS high-resolution mode

Purposes and goals:
Determining chemical abundances for individual stars to reveal (1) the evolutionary history of stellar components and substructures, and (2) the nature of clusters that have contributed to structure formation.

Contents:
• Separations of groups by α/Fe
 - thick disk stars
 - halo stars
• other useful elements for chemical tagging
• other possible (PI-type) projects
An extreme case: stars with low abundances of α elements

A goup of stars may be identified from elemental abundances
Origins and implications of individual elements

- **O, Mg**: SN II (M ≥ 20 Msun)
- **Si, Ca, Ti, Cr** (even-Z): SN II (not only massive ones)
- **Fe, Ni**: “metallicity”. SN Ia contribution (determination of atmospheric parameters)
- **Mn, Co**: SN II, metallicity dependent, explosion energy dependent
- **Eu**: r-process. Low-mass SN II?
- **Y, Zr, Ba, La**: s-process (+r-process at low metallicity)
α/Fe ratios of Galactic field stars

Simplified view

Observational results

inner/outer halo + thick disk

Thick disk

Thin disk
Elemental abundance studies for disk stars

 - 181 F & G dwarfs
 - 27 elements
 - stellar space motion

 - 176 stars → 95 thick disc stars
 - 22 elements
\(\alpha / \text{Fe} \) ratios in thick/thin disk stars

- Thick/thin disks are distinguished by kinematics
- There is metallicity overlap, but alpha/Fe is different
- A fraction of thick disk stars have similar elemental abundances to thin disk stars

Reddy et al. (2003)
α/Fe ratios in thick/thin disk stars

A scenario to explain the abundance ratios in the disk stars:
- enrichment by SNe and dilution by metal-poor gas

Reddy et al. (2003)

- Enrichment by SN II
- Infall of metal-poor gas?
- Enrichment by SN II + SN Ia
Stars having kinematics of the thick disk but abundances of the thin disk: the second component scattered from the thin disk?

Reddy et al. (2003)
\(\alpha / \text{Fe} \) ratios in halo stars

- Galactic halo consists of at least two components: outer and inner halos
- alpha/Fe ratios of halo stars show some variations
Stars having large Rapo (=outer halo) show low alpha/Fe?

α/Fe in outer halo stars: a new result

Outer halo stars show decrease of α/Fe in $[\text{Fe/H}]>-2$. →See Ishigaki et al. for details.

Filled symbols: outer halo stars ($Z_{\text{max}} > 5 \text{kpc}$)

Ishigaki et al., in prep.
Low α/Fe in outer halo stars \rightarrow connection to dwarf galaxies?

Tolstoy et al. (2006, ESO messenger)
Other elements for chemical tagging

1. Odd elements Mn and Cu

Stars in Sgr dwarf have lower Cu/Fe and Mn/Fe than in field stars... such dwarf galaxies are not the origin of field stars near the sun.
Other elements for chemical tagging
2. neutron-capture elements

[Y/Eu]
[Ba/Eu]
[La/Eu]
[Ba/Y]

Field stars
Dwarf galaxies

Venn et al. (2004)
An example of survey program

• A large sample of stars is required to study *individual* stellar components
• The survey must be extended to cover the range beyond the solar neighborhood

A survey program optimized for thick disk studies:
- High resolution mode (R=30,000, limited wavelength coverage)
- Area surveyed: 1000 sq. deg.
- Total number of spectra: 600,000
 thin disk: 300,000
 thick disk: 250,000
 halo: 10,000
- Observing time: 300 nights
Possible PI-type programs

• Searches for population III stars and their evidence
 - searches for metal-free or hyper metal-poor stars
 - searches for stars showing evidence of pair instability SNe
 - surveys for the outer halo and the bulge

• Astrophysical sites of explosive nucleosynthesis (r-process)
 → see Honda et al.
 - searches for r-process-enhanced stars
 - intensive studies for globular clusters and dwarf galaxies

• Dwarf galaxies, clusters, and streams
 → see Okamoto et al.
 - enrichment history of individual galaxies
 - chemical nature of disrupted clusters and streams