Subaru Weak Lensing of Seven Merging Clusters: Distributions of Mass and Baryons

Nobuhiro Okabe (Tohoku Univ.)
& Keiichi Umetsu (ASIAA)

すばるユーザーズミーティング
2007年 1月 29－30日
Chandra and XMM-Newton revealed complicated ICM structures which are expected to be associated with cluster mergers.

Density

Temperature

1E0657-56
(exposure time=500ksec)
Motivation

(1) ICM is dynamically controlled by dark matter.

(2) Understanding the ICM phenomena requires to know the dark matter (mass) distribution.

(3) Mass distributions deduced from X-ray results are ill constrained because the ICM is not in hydrostatic equilibrium.

\[
\frac{1}{\mu m_p n_g(r)} \frac{dP_g}{dr} = - \frac{d\Phi}{dr}
\]

The only method to directly reveal mass distribution without the assumption of dynamical states and mass distributions is to use a weak gravitational lensing effect.
2: Cluster Targets

1: We have not yet known mass distributions in almost all merging clusters!!!

* Various Merging Stages

Main Cluster → Binary

On-going

2nd impact

2: We have not yet known the relationship between dark matter and baryons (ICM and member galaxies) during merger process.
This talk focuses on distributions of mass and baryons in Merging Clusters.

Table 2. Cluster X-ray Features

<table>
<thead>
<tr>
<th>Cluster</th>
<th>z</th>
<th>Type</th>
<th>1 arcmin (kpc/h_{70})</th>
<th>Components</th>
<th>T_{ave} (keV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A754</td>
<td>0.0542</td>
<td>On-going</td>
<td>63.1</td>
<td></td>
<td>10.0 ± 0.3a</td>
</tr>
<tr>
<td>A1750</td>
<td>0.0860</td>
<td>Binary</td>
<td>96.7</td>
<td>A1750C</td>
<td>3.87 ± 0.10b</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A1750N</td>
<td>2.84 ± 0.12b</td>
</tr>
<tr>
<td>A1758</td>
<td>0.2790</td>
<td>Binary</td>
<td>254.0</td>
<td>A1758N</td>
<td>8.2 ± 0.4c</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A1758S</td>
<td>6.4$^{+0.3}_{-0.4}$c</td>
</tr>
<tr>
<td>A1914</td>
<td>0.1712</td>
<td>On-going</td>
<td>174.9</td>
<td></td>
<td>10.9 ± 0.7a</td>
</tr>
<tr>
<td>A2034</td>
<td>0.1130</td>
<td>Cold Front</td>
<td>123.2</td>
<td></td>
<td>7.9 ± 0.4d</td>
</tr>
<tr>
<td>A2142</td>
<td>0.0909</td>
<td>Cold Front</td>
<td>101.7</td>
<td></td>
<td>8.1 ± 0.4e</td>
</tr>
<tr>
<td>A520</td>
<td>0.1990</td>
<td>On-going</td>
<td>197.2</td>
<td></td>
<td>7.1 ± 0.9a</td>
</tr>
</tbody>
</table>
3: Summary

1: Weak Lensing analysis is a new observational method to understand galaxy clusters.
 - Complementary to X-ray / Optical Analyses.

2: Subaru + Suprime-CAM is the most powerful instrument of weak lensing analysis.
 - Subaru/Suprime-CAM can carry out WL analysis on almost ALL X-ray clusters
3 : Distributions of Mass, ICM, and member galaxies.

Initial Stage : Mass ~ Galaxies ~ ICM A1750 & A1758

On-Going/Cold front : Mass ~ Galaxies \(\neq \) ICM

Mass behind X-ray core : A754

No significant offset within smoothing scale : A520, A1914 & A1758S

4 : Combined Study (Subaru UM 2005)

Lx-T relation, M-T relation, \(f_{\text{gas}} \) & M/L...

Compare with Temperature, Pressure and Entropy Maps of ICM

Constrain merger geometry & energy input into ICM…
Locuss
(Local Cluster Substructure Survey)

Flux limited Sample: Lx > 5 x 10^{44} erg/s
Redshift : 0.15 < z < 0.30

Subaru/Suprime-CAM : Goal ~40 clusters
Currently ~15 clusters (S05B & S06A , PI: Futamase)
Reduction finished! and observation (S07A)
(Okabe, Takada, Umetsu & Futamase, PASJ, in prep)

HST/ACS: 143 Targets (100 clusters) Simith & Kneib
NOW OBSERVING (until the end of 2007)

Chandra/XMM-Newton/Suzaku: Mazzotta, Ponman, Finogenov & Okabe
Archival DATA (Chandra/XMM)+ Suzaku (Low X-ray background)

SZE: SZA Carlstrom & Church

Combined Studies : WL+ SL, WL+X-ray, WL+SZE