Discovery of a new QSO
$z=5.96$ with the Subaru telescope

Tomo Goto (Japan Aerospace Exploration Agency)
Why high-z QSOs are important?

1. Directory prove re-ionization of the Universe

2. QSO/AGN evolution

3. Formation of super massive black holes
Reionization of the Universe

When and how our Universe started?

(Jelle Ritzerveld & Rien van de Weijgaert & Vincent Icke)
Visualizations of the Geometry of Reionization

Garrelt Mellema.
Galaxies are too faint.
GRBs disappear too quickly.
Why high-z QSOs are important?

1. Directory prove re-ionization of the Universe

2. QSO/AGN evolution

3. Formation of super massive black holes
Systematic flattening of the LF above $z \sim 3$

Fainter QSOs at $z > 5$ are needed to investigate the evolution of QSO LF.
Comoving number density peaks between $z=2$ and 3

LF slope increases at $z=3$ and above.
A crucial question: the shape and slope of the LF at the faint end...

5645 quasars with $g < 21.85$ selected from SDSS imaging, observed with 2dF at AAT. UV excess sources, almost all with $z < 2.5$. Best-fit slope β is -1.45 at faint end. Fitting these data simultaneously is a challenge for modern models of quasar evolution.

Fainter QSOs at high-z are needed to investigate the evolution of QSO LF.
Why high-z QSOs are important?

1. Directory prove re-ionization of the Universe

2. QSO/AGN evolution

3. Formation of super massive black holes
Constraining the formation of super massive black holes.

- $z \sim 6$ QSOs are at the young Universe of 1 Gyr old.

- $M_{1450} = -27$ mag: Can a black hole of billion Msun be formed in 1 Gyr? Strong constraints to the black hole formation theory (Haiman 2006, MmSAI, 77, 629)
Are high-z QSOs gravitationally lensed (and magnified)?

If yes, luminosity/mass are overestimated.
HST ACS images are consistent with a point source.

Richards et al 2004, 2005

ACS image of the quasar

Residuals after subtracting off the PSF

High-z QSOs do not seem to be magnified by the lens.

Luminosity is still ~ -27 mag

How we form billion Msun black holes in 1 Gyr?

$=>$ Theoretical challenge.
Current status of high-z QSO surveys
Reionization depends line-of-sights

More QSOs in different line-of-sight are needed to fully probe the reionization of the Universe.

The resolution of these questions will have to wait for the discovery of additional $z > 6$ quasars. (Richard L. White)

Fig. 1.—Keck Echellette Spectrograph and Imager spectrum of SDSS J1148+5251 (White et al. 2003) with the filter throughputs for our HST ACS observations. The narrow blue filter (FR716N-7220, $\lambda_c = 7219$ Å, and FWHM = 134 Å) is placed in the dark Lyβ absorption region around $z = 6$ and isolates the narrow emission peak at $\lambda = 7205$ Å. The broader red filter (FR914M-9050, $\lambda_c = 8980$ Å, and FWHM = 780 Å) encompasses the quasar’s strong Lyα emission line and continuum and is used as a reference image.

No foreground galaxy.
The flux really comes from the QSO through IGM.
No foreground galaxy.
The flux really comes from the QSO through IGM.
Optical depth

Quick change at $z \sim 5.7$!

Expected density change from the expansion of the Universe.

We need more QSOs at $z > 5.7$
We need more $z > 6$ QSOs.

→ How do we search?
Our strategy: fainter, toward higher redshift \((z>20.2)\)

By product: fainter \(z\sim5.8\) QSO, important to investigate LF slope.
20.2 < z < 21.0 still secure

Figure 2. (right) Number counts of point-like sources in the SDSS u-r-band. The y-axis range of ourCatalogue is shown as a region surrounded by the blue dotted lines. Note that the number counts drop off quickly as the magnitude increases.
Method:
1800 million objects to a few dozen candidates

1. **z-band** only detections in the SDSS
2. Cosmic-ray rejection **(important)**
3. J-band imaging to reject brown dwarfs (brown dwarfs are also interesting objects.)
4. Spectroscopy with the Subaru
The Apache Point Observatory
Sunspot, New Mexico

- 2.5m SDSS telescope
- Photometric calibration telescope
- 3.5m telescope
Interior view of the camera, showing the filters on the corrector plate.

Z-band filter is essential for the QSO search.
Find z-band only detections among 1800 million objects in the SDSS.

*TDI (drift scan) imaging is not particularly advantageous for QSO search.
Method:
1000 million objects to a few dozen candidates

1. z-band only detections in the SDSS
2. Cosmic-ray rejection (important)
3. J-band imaging to reject brown dwarfs (brown dwarfs are also interesting objects.)
4. Spectroscopy with the Subaru
QSOs and brown dwarfs have the same i-z color → We need J-band imaging

Telescope time spend on brown dwarfs won’t be wasted.
J-band imaging is important.

Figure 4. (right) The $i-z-J$ color-color diagram. Using 32 nights of 2-4m telescopes for J-band imaging, we have found many high-z QSO candidates with $z-J < 1.7$ & $i-z > 2.2$ (dots in the lower right region). The simulated track is plotted with the blue line. These candidates are highly likely to be QSOs, waiting to be discovered by the Subaru/FOCAS.
Hard! J-band imaging

Kitt Peak 2m telescope
Apach Point Observatory
3.5m

Hard! J-band imaging
Himalayan Chandra Telescope

Hard! J-band imaging
Hard! J-band imaging

Okayama 1.88m
Hard! J-band imaging

NTT3.6m
A Happy New Year @La Silla
Figure 4. (right) The $i - z - J$ color-color diagram. Using 32 nights of 2-4m telescopes for J-band imaging, we have found many high-z QSO candidates with $z - J < 1.7$ & $i - z > 2.2$ (dots in the lower right region). The simulated track is plotted with the blue line. These candidates are highly likely to be QSOs, waiting to be discovered by the Subaru/FOCAS.
i, z, J images: a good candidate
Method:
1000 million objects to a few dozen candidates

1. \textit{z}-band only detections in the SDSS
2. Cosmic-ray rejection (important)
3. J-band imaging to reject brown dwarfs (brown dwarfs are also interesting objects.)
4. Spectroscopy with the Subaru
We found a z=5.96 QSO

\[M_{AB,1450} = -26.9 \]

\((H_0 = 50 \text{ km s}^{-1} \text{ Mpc}^{-1}, q_0 = 0.5)\)
Remaining flux at 8000–8300 Å. The Universe was already ionized in this line-of-sight at $z = 5.58–5.82$. **Escaping flux**
Summary

• We are searching for cosmologically important $z \sim 6$ QSOs.
• We found a new QSO at $z = 5.96$ (Goto 2006 MNRAS, 371, 769), showing our targeting strategy works.
• There was escaping flux at 8000–8300 Å. The Universe was already ionized at $z = 5.58–5.82$ in this direction.
• More QSO candidates are waiting to be discovered.