SUBARU Telescope
Damages and Recovery from the Earthquake

Tomonori USUDA
(SUBARU Telescope)

Contents:
1. Brief Overview of the Earthquake
2. Summit Facility
3. Telescope
4. Instruments: IRCS, AO188, LGS, HDS
5. Summary

1. Brief Overview of the Earthquake

Date, Time, Magnitude:
1st: October 15 (Sun) 7:07AM M6.7
2nd: October 15 (Sun) 7:14AM M6.0

- Observation had finished at 6:50 and operators had left summit for HP at 7:00.
- After the 1st earthquake, the power supply had been failed. The power was recovered after 3 PM.

Epicenter: North-West of Big-Island
1st: Distance from the Mauna Kea summit is ~51km / 2nd is ~65km.

Modified Mercalli Intensity (Shindo in Japanese)
Mauna Kea summit (estimated): VII (shindo=4~5)
Hilo: V (3~4) / Honolulu: IV (3)
1. Brief Overview of the Earthquake

Previous Earthquakes:
- It is the biggest last 200 years at the summit of Mauna Kea.

- The conditions not to be awfully destroyed are as follow:
 Horizontal and Vertical Acceleration = 0.3 and 0.2 G

Estimated Acceleration due to the M6.7 earthquake:
- According to the reports from US Geological Survey (USGS), the peak ground acceleration (PGA) was estimated to be \(0.2-0.3\text{G}\) at the summit.

Fortunately, there were no significant damages on SUBARU.

It was necessary to carry out detailed analyses of the impact of the earthquakes and careful repair work. Science observations and public tours of the telescope will be halted until the end of October.

Tomonori Usuda
2. Damages at the summit facility

❖ One of the four slide guide was broken on the freight elevator.
 → 10/17 (temporally repair), 11/6 (Repair done)
❖ Ceiling boards, computers, displays, etc. were fallen at the 3rd floor of the control building.
❖ Several cracks on the walls of the control building.
❖ Some cracks in the foundation of the access way between the enclosure and the control building.
3. **Damages on the Telescope**

🌟 **Center hub of the Az axis was moved.**

- **About 1.2mm shifted toward South-West direction**
 → The tracking accuracy was worse, since the separation between Az incremental encoder tape and its detector was changed (normally 0.25mm).
- **Shift the hub back to the original position** → Difficult & Give up
- **Shift the position of the Az encoder tape**
- **Non-shrink mortar around the hub was broken.**
 → Difficult to refill and spread mortar between the center hub and the pier, thus the **mechanical steel ring structure** is designed and will be installed around the hub in order to support it in May.

🌟 **IR-M2**

- The **mechanical fuses were broken** which have been installed between the M2 glass and the electromagnetic actuator to protect glass.
 → Disassemble the M2 unit to replace fuses.

🌟 **Poorer Image Quality**

- Images taken by FOCAS
 - Astigmatism (aberration) was seen.
 - Focal plane was tilted → Best focus position was different in the FOV.
 → Primary mirror was shifted. Mirror analysis works for all foci are on going.
Comparison between before/after adjustment

Blue: After EQ (10/19), Red: After adjustment (10/24)

separation between encoder tape and detector (10 µm)

Center hub shifted

Before EQ

After EQ

Center hub

24 Fixing Bolts

Pier

Mortar

Az Central hub

Broken Mortar pieces

Easy to remove them
Mechanical steel ring structure

IR-secondary mirror (IR-M2) @Dome TUE floor (4F)
The mechanical fuses are working, in order to protect glass due to impacts, over-loads, etc.

→ Adjust M2 positions
1. Instruments (e.g., MOIRCS, IRCS, S-Cam) were used to check image quality.
2. Cs-IR (Dec.26) / Cs-Opt focus (Dec.22) / PF-Opt (Nov.16) / NsIR (Nov.06) / NsOpt (Dec.07 & Jan.24)
3. There are 29 modes! Moreover, some software bugs are found.
Current status of PA/MA

<table>
<thead>
<tr>
<th>PR</th>
<th>PA</th>
<th>MA</th>
<th>Q1-axis SH</th>
<th>X(mm)</th>
<th>Y(mm)</th>
<th>X0</th>
<th>Y0</th>
<th>U(mm)</th>
<th>V(mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>POpt</td>
<td>EngObs061116</td>
<td>EngObs061116</td>
<td>EngObs061116</td>
<td>0</td>
<td>0</td>
<td>1.5</td>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cs(CoOpt)</td>
<td>EngObs061027</td>
<td>EngObs061027</td>
<td>EngObs061027</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cs(CoOpt)+HDC</td>
<td>EngObs061222</td>
<td>EngObs061222</td>
<td>EngObs061224</td>
<td>2.5314</td>
<td>0.2912</td>
<td>0.2364</td>
<td>-2.7859</td>
<td>0</td>
<td>0 or -6.5°</td>
</tr>
<tr>
<td>?NaOpt?(CoOpt)</td>
<td>EngObs061028</td>
<td>EngObs061028</td>
<td>EngObs061027</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>?NaOpt?(CoOpt)+ADC</td>
<td>EngObs061028</td>
<td>EngObs061027</td>
<td>EngObs061027</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>?NaOpt?(CoOpt)+H(R)</td>
<td>EngObs061028</td>
<td>EngObs061028</td>
<td>EngObs061028</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>?NaOpt?(CoOpt)+H(R)+ADC</td>
<td>EngObs061028</td>
<td>EngObs061028</td>
<td>EngObs061028</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>?NaOpt?(CoOpt)+H(R)+ADC</td>
<td>EngObs061028</td>
<td>EngObs061028</td>
<td>EngObs061028</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>?NaOpt?(CoOpt)+H(R)+ADC</td>
<td>EngObs061028</td>
<td>EngObs061028</td>
<td>EngObs061028</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>?NaOpt?(CoOpt)+H(R)+ADC</td>
<td>EngObs061028</td>
<td>EngObs061028</td>
<td>EngObs061028</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>?NaOpt?(CoOpt)+H(R)+ADC</td>
<td>EngObs061028</td>
<td>EngObs061028</td>
<td>EngObs061028</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>?NaOpt?(CoOpt)+H(R)+ADC</td>
<td>EngObs061028</td>
<td>EngObs061028</td>
<td>EngObs061028</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>?NaOpt?(CoOpt)+H(R)+ADC</td>
<td>EngObs061028</td>
<td>EngObs061028</td>
<td>EngObs061028</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>?NaOpt?(CoOpt)+H(R)+ADC</td>
<td>EngObs061028</td>
<td>EngObs061028</td>
<td>EngObs061028</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>?NaOpt?(CoOpt)+H(R)+ADC</td>
<td>EngObs061028</td>
<td>EngObs061028</td>
<td>EngObs061028</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>?NaOpt?(CoOpt)+H(R)+ADC</td>
<td>EngObs061028</td>
<td>EngObs061028</td>
<td>EngObs061028</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>?NaOpt?(CoOpt)+H(R)+ADC</td>
<td>EngObs061028</td>
<td>EngObs061028</td>
<td>EngObs061028</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

29 modes!

4. Damages on the instruments

- **No damages**
 - Suprime-Cam, COMICS, MOIRCS, CISCO(*) , AO36, CIAO, Kyoto3DII(*), FMOS(*)

- **Damaged instruments**
 - Nasmyth-IR focus: **IRCS, AO188(*)**, Laser Guide Star system (LGS)
 - Nasmyth-Opt focus: **HDS**

(*): The final tests have not been done yet when they are mounted on the focus position.
4. Damages on the instruments: IRCS & AO188

Both AO188 and IRCS were fallen off from the fixed bases.

4. Damages on the instruments: LGS

The output is unstable after the earthquake due to the misalignment of the optical and laser parts (~0.01 mm).
4. Damages on the instruments: HDS
Misalignment of the optics and CCD camera unit.

→ Worse spectral resolution and tilted focal plane
 - Installation accuracy was ~0.1mm.
 - Non-uniform spectral resolution on the CCD with 0.2"
→ Re-adjustment works had been successfully done on Jan.17.

Summary

☞ It was necessary to carry out detailed analyses of the impact of the earthquakes and careful repair work. Science observations(*) and public tours of the telescope will be halted until the end of October.

(*)10/15-16: FOCAS (UH: Bresolin)
10/20-21: S-Cam (UH: Sheppard)
10/25: IRCS (Miyata)

10/17-19: K3DII (Saito)
10/22-24: S-Cam (Ouchi)
10/26-27: IRCS (Leigh)

☞ Fortunately, there were no significant damages on SUBARU.

☞ From Oct.26, SUBARU could start engineering observations.
☞ From Nov.3, SUBARU resumed open-use observations.
☞ From Nov.8, SUBARU resumed public tours at the summit.
☞ The performance test works are still on going. It takes more engineering time to check all functions on SUBARU.

We appreciate your expressions of concern and encouragement.