Chemical composition of HE1327-2326, the most iron-deficient star known

最も鉄組成の低い星 HE1327-2326 の発見と化学組成解析

Wako Aoki
青木和光

National Astronomical Observatory of Japan
国立天文台

The Graduate University for Advanced Studies
総合研究大学院大学
Collaborators:

T. C. Beers (Michigan State Univ.)
N. Christlieb (Hamburg Univ.)
J. E. Norris, M. Asplund, A. Frebel (Australian National Univ.)
S. Honda, H. Ando, T. Kajino (NAOJ)
M. Takada-Hidai (Tokai Univ.)
S. G. Ryan, S. Tsangarides (Open Univ.)
T. Minezaki, K. Nomoto, Y. Yoshii (Univ. of Tokyo)
M. Y. Fujimoto (Hokkaido Univ.)
P. Barklem, K. Eriksson (Uppsala Observatory)
A. Steinhauer (Univ. of Florida)
C. Deliyannis (Indiana Univ.)

Background: metallicity (Fe abundance) distribution of halo stars

Until 2001, no halo star having $[\text{Fe/H}]<-4$ was known, nevertheless large efforts to search for metal-deficient stars.

Chriestlieb et al. (2002, Nature 419, 904) reported a star with $[\text{Fe/H}]=-5.3$ (HE0107-5240). This is a giant with a large excess of carbon ($[\text{C/Fe}]\sim+4$).

Many models have been proposed to interpret the low iron abundance and the excess of carbon in HE0107-5240. Further search for stars with $[\text{Fe/H}]<-4$ has been strongly desired.
A Subaru/HDS program: Chemical abundance patterns of the first generations of stars

Sample selection:
1) Objective prism surveys:
 - HK-survey (Beers et al. 1985, 1992)
 - Hamburg/ESO survey (Christlieb et al. 2003)

2) Medium resolution spectroscopy
 ESO 1.5m, 3.6m; SSO 2.3m, KPNO 2.3m; etc.

3) HERES (Barklem et al., 2005)
A Subaru/HDS program:
Chemical abundance patterns of the first generations of stars

High resolution spectroscopy:
- R=60,000 for 4000--6800A
- S/N~100--200@4500A

2003 Dec. 2 nights (1 clear night)
2004 May/June 4 nights (3.5 clear nights)
2005 Feb/March 3.5 nights (3 clear nights)
2005 June 5 nights (scheduled)

Photometry
determination of atmospheric parameters
ESO/Danish 1.5m; KPNO 0.9m; CTIO 0.9m; MAGNUM
HE1327-2326: the most iron-deficient star known
Evolutionary status of HE1327-2326: very close to main-sequence = an unevolved star

dots: stars in the globular cluster M15

HE0107-5240

HE1327-2326
1. Iron abundance

Medium resolution spectra →

High resolution spectra →

very weak Fe lines → [Fe/H] = -5.4

detection of CH molecular bands → excess of carbon
2. A large excess of carbon

HE1327 and HE0107 have very high C/Fe ([C/Fe]~+4) → A common origin of the peculiar abundance pattern
3. Abundances of N, Na, Mg and Al

HE1327 show excesses of these elements with respect to HE0107

\([\text{Mg/Fe}]\) of HE1327 is \(~1.5\) dex higher than that of HE0107
Comparison of the abundance patterns between HE1327 and HE0107

Average of extremely metal-poor stars
4. The light Neutron-capture element Sr

The two Sr resonance lines are detected only in HE1327-2326, while no Ba line is seen.
→excess of light neutron-capture elements
4. The light Neutron-capture element Sr

![Graph showing data points for the light Neutron-capture element Sr.](image)

- **HE1327-2326**
- **HE0107-5240**

Legend:
- ★ This work
- ○ Francois et al. 2003
- □ Cohen et al. 2004
- • Carretta et al. 2002
- ♦ Honda et al. 2004
- ● Aoki et al. 2005
- ▲ Aoki et al. 2004
5. Upper-limit of Lithium Abundance

- $T = 6380K, [\text{Fe/H}] = -3.2$
- $T = 6200K, [\text{Fe/H}] = -3.5$
- $T = 6200K, [\text{Fe/H}] = -3.2$
- $T = 6180K, [\text{Fe/H}] = -5.5$
5. Upper-limit of Lithium abundance

\[T_{\text{eff}} > 6000 \]

HE1327–2326

This work

\[\circ \] Ryan et al. 1999

\[\star \] Norris et al. 2000
Summary: the chemical abundance pattern of the unevolved star HE1327-2326

1. The iron abundance ([Fe/H]=-5.4) is lowest in halo stars known to date. No star has been found in -5<[Fe/H]<-4.

2. The excess of carbon is significant ([C/Fe]=+4), as found in HE0107-5240. These two stars have similar enrichment history.

3. The excesses of N, Na, Mg and Al is significant in HE1327-2326.

4. The excess of Sr is found in HE1327-2326.

5. The Li abundance of HE1327-2326 is significantly lower than the values found in halo unevolved stars.
Possible interpretations

• Population III (=1st generation star) scenario: HE1327 (as well as HE0107) formed from primordial (metal-free) clouds, but polluted by interstellar medium (Fe etc.) and AGB stars (C etc.).
 cf. Suda et al. 2004

• Population II (>2nd generation star) scenario: HE1327 (as well as HE0107) formed from clouds polluted by 1st generation massive stars, that have provided C-rich material.
 -“Faint supernova”: Umeda & Nomoto 2003,
 Iwamoto et al. 2005
 -Rotating massive star: Meynet et al. 2006
Comparison with the calculation of “faint supernova” model

Iwamoto et al. 2005
Ongoing & future work

Further observing for HE1327-2326 ... was made with VLT. → detection of OH molecular lines.

Frebel et al. 2006 (submitted to ApJL)

Further survey & spectroscopy:
- Hamburg/ESO survey + VLT
- SDSS-SEGUE + Subaru