A demographic view on the active black hole growth history out to z=2

Andreas Schulze

Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU)
The University of Tokyo

Subaru Seminar, Hilo Base Facility, Hawaii
19.05.2015
Black hole - galaxy coevolution

$M_\bullet - \sigma_*$ relation

AGN Feedback required to shut off SF in massive galaxies

McConnell & Ma (2013)

⇒ $M_\bullet - \sigma_*$: AGN Feedback? Central limit? Both?

⇒ what effect has the black hole on its host galaxy?
Black hole - galaxy coevolution

integrated cosmic BH accretion history parallel to SF history

Zheng et al. (2009)

⇒ link between black hole growth and galaxy evolution

⇒ how are black holes growing?

Rosario et al. (2012)

Chen et al. (2013)
AGN demographics: The AGN LF

AGN Luminosity function is main demographic quantity

\[\log \Phi \]

\[0.0 < z < 0.3 \]
\[0.3 < z < 0.5 \]
\[0.5 < z < 0.7 \]

\[0.7 < z < 1.0 \]
\[1.0 < z < 1.5 \]
\[1.5 < z < 2.0 \]

\[2.0 < z < 2.5 \]
\[2.5 < z < 3.0 \]
\[3.0 < z < 3.5 \]

\[3.5 < z < 4.0 \]
\[4.0 < z < 4.5 \]
\[4.5 < z < 5.0 \]

\[M_i(z = 2) [\text{mag}] \]

Andreas Schulze (Kavli IPMU)
AGN demographics: AGN LF evolution

AGN Luminosity function is main demographic quantity

- space density of bright QSOs peaks at $z \approx 2 - 3$

optical: SDSS (Richards et al. 2006)

X-rays: Hasinger et. al (2005)
AGN demographics: AGN LF evolution

AGN Luminosity function is main demographic quantity

- space density of bright QSOs peaks at $z \approx 2 - 3$
- peak is shifted towards lower z for fainter AGN

\Rightarrow AGN cosmic downsizing

optical: SDSS (Richards et al. 2006)
X-rays: Hasinger et al. (2005)
AGN demographics: AGN LF evolution

AGN Luminosity function is main demographic quantity

- space density of bright QSOs peaks at \(z \approx 2 - 3 \)
- peak is shifted towards lower \(z \) for fainter AGN

\(\Rightarrow \) AGN cosmic downsizing

optical: various surveys

X-rays: Hasinger et. al (2005)
Implications for BH growth

- BH mass density accreted during QSO phases = local BH mass density (Soltan argument)
- most BH growth takes place in luminous AGN phase

⇒ AGN downsizing implies anti-hierarchical BH growth

Constraints on theoretical models

- SAMs & numerical simulations able to reproduce AGN LF and downsizing

SAMs

- Menci et al. (2014)

Numerical simulations

- Hirschmann et al. (2014)
How can we trace black hole growth?

Limitation of AGN LF:

Physical quantities of black holes:
- black hole mass M_\bullet
- accretion rate / Eddington ratio $\lambda = \frac{L_{\text{bol}}}{L_{\text{Edd}}}$
How can we trace black hole growth?

Limitation of AGN LF:

Physical quantities of black holes:
- black hole mass M_\bullet
- accretion rate / Eddington ratio $\lambda = L_{\text{bol}} / L_{\text{Edd}}$

$\Rightarrow L \propto \lambda M_\bullet$ implies degeneracy between M_\bullet and λ

\Rightarrow additional M_\bullet information able to break this degeneracy
How can we trace black hole growth?

Limitation of AGN LF:

Physical quantities of black holes:
- black hole mass M_\bullet
- accretion rate / Eddington ratio $\lambda = L_{\text{bol}}/L_{\text{Edd}}$

$\Rightarrow L \propto \lambda M_\bullet$ implies degeneracy between M_\bullet and λ

\Rightarrow additional M_\bullet information able to break this degeneracy

Active black hole mass function - $\Phi_\bullet(M_\bullet)$
Eddington ratio distribution function - $\Phi_\lambda(\lambda)$

- well-defined AGN sample
- black hole mass estimates
for virial motion in BLR:

\[M_\bullet = f \frac{R_{BLR} \Delta V^2}{G} \]
Black hole masses for broad line AGN

- for virial motion in BLR:
 \[M_\bullet = f \frac{R_{\text{BLR}} \Delta V^2}{G} \]
- \(\Delta V\) from broad line width

\[\text{BLR size (light days)} \]
\[\text{log } \frac{\lambda L_\lambda (5100 \text{ Å})}{10^5} \]

\[\text{log } H_\beta \]

Bentz et al. (2009)

Andreas Schulze (Kavli IPMU)

Black hole growth history
Black hole masses for broad line AGN

- for virial motion in BLR:
 \[M_\bullet = f \frac{R_{\text{BLR}} \Delta V^2}{G} \]
- \(\Delta V \) from broad line width
- scaling relation between BLR size and continuum luminosity (via reverberation mapping)
 \[R_{\text{BLR}} \propto L_{5100}^{0.5} \]

Bentz et al. (2009)
Black hole masses for broad line AGN

- for virial motion in BLR:
 \[M_\bullet = f \frac{R_{BLR} \Delta V^2}{G} \]

- \(\Delta V \) from broad line width

- scaling relation between BLR size and continuum luminosity (via reverberation mapping)
 \[R_{BLR} \propto L_{5100}^{0.5} \]

- estimate \(M_\bullet \) from spectrum
 \[M_\bullet \propto L_{5100}^{0.5} \Delta V^2 \]

\[\Rightarrow \] feasible to estimate \(M_\bullet \) for large samples of broad line AGN out to high \(z \)

Bentz et al. (2009)
define active BH:

⇒ active BHs limited to broad line AGN
⇒ luminosity limit poor criteria for BHMF (incompleteness at low mass by definition)
⇒ define active black hole by Eddington ratio limit
⇒ active BH: type-1 AGN with $\log \lambda > -2$
The bivariate distribution function of BH mass and Eddington ratio

- model DF via fitting of bivariate distribution function of M_\bullet and λ
 - Black hole mass function (BHMF) and Eddington ratio distribution function (ERDF) determined jointly by fitting probability distribution in $M_\bullet - \lambda$-plane
 - via Maximum likelihood method (Schulze & Wisotzki 2010) or via Bayesian framework (Kelly et al. 2009)

ML approach

- BHMF
- $+$ ERDF
- $+$ survey selection function
- $=$ probability distribution
The local active black hole mass function and Eddington ratio distribution function

Local ($z < 0.3$) BHMF and ERDF from the Hamburg/ESO Survey

Active black hole mass function

Eddington ratio distribution function

Schulze & Wisotzki (2010)

⇒ No evidence for downturn at low black hole mass or at low Eddington ratio
Active fraction of local black holes

compare to quiescent BHMF of Marconi et al. 2004

Andreas Schulze (Kavli IPMU)
compare to quiescent BHMF of Marconi et al. 2004

- significant decrease of active fraction toward higher M_\bullet
- indication for cosmic downsizing in black hole mass
at $z > 0.4$ BHMF and ERDF determined from SDSS QSO sample
⇒ evidence for black hole mass downsizing
⇒ only high mass end of BHMF, high λ end of ERDF

Kelly & Shen (2013)
BH demographics from VVDS, zCOSMOS and SDSS

combine bright, large area surveys (SDSS) with deep, small area AGN surveys (VVDS, zCOSMOS)

SDSS: \(i < 19.1 \) \(\Omega_{\text{eff}} = 6248 \text{ deg}^2 \) color selection

VVDS: wide: \(I_{\text{AB}} < 22.5 \) \(\Omega_{\text{eff}} = 4.5 \text{ deg}^2 \)
depth: \(I_{\text{AB}} < 24.0 \) \(\Omega_{\text{eff}} = 0.6 \text{ deg}^2 \) random selection

zCOSMOS: \(I_{\text{AB}} < 22.5 \) \(\Omega_{\text{eff}} = 1.6 \text{ deg}^2 \) random + X-ray selection
BH demographics from VVDS, zCOSMOS and SDSS

⇒ 1.1<z<2.1
⇒ use MgII BH masses

⇒ SDSS: ~ 28000 AGN
BH demographics from VVDS, zCOSMOS and SDSS

⇒ 1.1<z<2.1
⇒ use MgII BH masses

⇒ SDSS: ~ 28000 AGN
⇒ VVDS: 86 + 61 AGN
BH demographics from VVDS, zCOSMOS and SDSS

⇒ 1.1<z<2.1
⇒ use MgII BH masses

⇒ SDSS: \(\sim 28000 \) AGN
⇒ VVDS: \(86 + 61 \) AGN
⇒ zCOSMOS: 145 AGN

Andreas Schulze (Kavli IPMU)
Active black hole demographics at $1 < z < 2$

active black hole mass function

Eddington ratio distribution function

Schulze et al. (2015)
Bivariate distribution function of M_\ast and λ at $1 < z < 2$
Comparison with $M_\bullet - \lambda$ plane and AGN LF

By construction the BHMF & ERDF is consistent with observed $M_\bullet - \lambda$ plane and with bolometric AGN LF.
Evolution of the active black hole mass function and Eddington ratio distribution function comparison with local distribution functions

⇒ strong downsizing in the active BHMF
⇒ decrease of average Eddington ratio towards $z = 0$
Evolution of the AGN space density

⇒ strong downsizing in the active BHMF
⇒ moderate evolution in ERDF
compare to quiescent BHMF derived from stellar mass function

at $z \approx 1.5$ broad line AGN active fraction almost independent of M_\bullet.
The evolution of the active black hole fraction

week evolution at $\sim 10^7 \, M_\odot$

strong evolution at $> 10^9 \, M_\odot$

\Rightarrow witness shutoff of black hole growth at the high mass end between $z = 2$ and $z = 0$
Constraints on theoretical models

⇒ comparison with galaxy evolution models
⇒ discriminate between different models of galaxy evolution, AGN feedback, SMBH seeds

Hirschmann et al. (2012)

Natarajan & Volonteri (2012)
Comparison with numerical simulations

- comparison with simulation from Hirschmann et al. (2014)
 \[\Rightarrow \] good match at \(z > 1 \) and \(M_\bullet < 10^{9.5} \)
 \[\Rightarrow \] disagreement at low-\(z \) and high \(M_\bullet \) => caused by radio-mode AGN feedback implementation

Schulze et al. (2015)
Implications for the BH-bulge relations

⇒ cosmic evolution of the black hole-bulge relations provides constraints for coevolution models
⇒ understanding of biases on evolution of BH-bulge relations requires knowledge of distribution functions

Schulze & Wisotzki (2011)

Bongiorno et al. (2014)
Implications for the BH-bulge relations

⇒ selection effects can account for observed apparent trend of increasing M_\bullet/M_\ast ratio

⇒ no statistically significant evidence for positive evolution in M_\bullet—bulge relation with redshift, out to $z \sim 6$

Schulze & Wisotzki (2014)
Conclusions

- active BHMF and ERDF provide additional observational constraints on BH growth and galaxy evolution
- established at $z < 2$
 - downsizing in AGN LF mainly driven by downsizing in the BHMF
 - shutoff of black hole growth at the high mass end from $z = 2$ to $z = 0$
 - new observational constraints for theoretical models of galaxy formation and BH growth