Time-series Photometry of Earth Flyby Asteroid 2012 DA14

Tsuyoshi Terai
Subaru Telescope

Asteroid populations

Main-belt asteroids

Spectral classification

Surface composition of asteroids depends on formation environments and several evolution processes (e.g. thermal, chemical, weathering)

Asteroid classification by reflectance spectra

(Bus \& Binzel 2002)

Surface properties

Composition \rightarrow spectra, reflectivity

Structure \rightarrow light scattering characteristics

Providing important clues as to

- Internal materials / structure
- Collisional evolution
- Thermal / aqueous alterations
- Linkage between asteroids and meteorites

Phase curve

Brightness increases with decreasing solar phase angles

Phase curve

The shape of phase curve depends on

- Composition (reflectivity)
- Structure (roughness)

Useful indicator of surface properties

Asteroid 2012 DA $_{14}$

- Near Earth asteroid named "Duende"
- Discovered on February 23, 2012, in Spain
- Tiny body with diameter of about 50 m

Today

Earth Flyby of 2012 DA $_{14}$

- Passed closely to the Earth on Feb 15, 2013
- Approached to the distance of $\mathbf{\sim 2 8 , 0 0 0} \mathbf{k m}$

Feb 15, 2013 (UT)

Earth Flyby of 2012 DA $_{14}$

- Passed closely to the Earth on Feb 15, 2013
- Approached to the distance of $\mathbf{\sim 2 8 , 0 0 0} \mathbf{k m}$ \rightarrow inside a geosynchronous orbit !

2012 DA14's orbit

Brightening

Brightness highly increased to $\boldsymbol{V}=\mathbf{7} \mathbf{m a g}$!
\rightarrow Easy to perform high accuracy photometry

Aim of observation

Solar phase angle varied $20^{\circ}-50^{\circ}$ during 2 hours around the closest approach

Allowing us to measure the phase curve precisely and efficiently

Great opportunity for investigating surface properties of tiny bodies

Difficulty

(1) Extremely rapid sky motion
\rightarrow More than $50 \operatorname{arcmin}^{\min }{ }^{-1}$ in maximum

Difficulty

(2) Observable within only a short time (in Japan)

Strategy

1. Using $0.55-\mathrm{m}$ Saitama-Univ. Telescope

- Bright objects are not easy to saturate
- High mobility and operability
- Allows pointing toward low elevation

2. With an $1 \mathrm{k} \times 1 \mathrm{k}$ CCD camera mounted on the prime focus
\rightarrow Wide field of view (32'x 32')

3. High-rate continuous imaging with very short exposure

Observation

- 2013 Feb 16 4:00-6:10 (JST; UT+9)
- R-band imaging with 0.5 -sec exposure
- Data acquisition every 2 sec
- Under sidereal tracking
- Keep the target in the field-of view with manual telescope operation

More than 2000 images have been obtained with good sky condition all over 2 hours

Animation of acquired images

Measurements

- Photometry with an elongated circular aperture
- Flux calibration using background USNO stars

Lightcurve

The magnitude was adjusted for the heliocentric/geocentric distances to those at the closest approach.

The magnitude was adjusted for the heliocentric/geocentric distances to those at the closest approach.

The magnitude was adjusted for the heliocentric/geocentric distances to those at the closest approach.

Additional observation

In the next night (Feb 16, 2013), $2012 \mathrm{DA}_{14}$ had

- Constant solar phase angle ($82.2^{\circ}-82.6^{\circ}$ in the latter half night)
\rightarrow Possible to obtain a brightness variation due to only the asteroid rotation
- Slower sky motion ($\sim 10 \operatorname{arcmin} \mathrm{hr}^{-1}$)
- Fainter brightness of $V \sim 15 \mathrm{mag}$

Follow-up observation with continuous R-band imaging of $\mathrm{Texp}^{\mathbf{e}} 10-60 \mathrm{sec}$ over 5 hours

1st night vs. 2nd night

Feb 15 19:30 UT

Texp $=0.5 \mathrm{sec}$
$R \sim 7$ mag

Feb 16 16:00 UT

Texp = 20 sec
$R \sim 14$ mag

Rotation model
Fitting with a 4th-order Fourier series formulation

Rotational phase

Rotational period $=11.0{ }_{-0.6}^{+1.8} \mathbf{~ h r}$

$$
\text { Peak-to-peak amplitude }=1.59 \pm 0.02 \mathrm{mag}
$$

Spectral type

Visible spectra + Visible/NIR colors (de León et al. 2013)
\rightarrow Classified as an L-type asteroid

Interpretation

Previous observations

Slope of asteroid phase curve is inversely correlated with surface reflectivity $\left(10^{\circ}<\alpha<50^{\circ}\right)$
(Belskaya \& Shevchenko 2000)

Mean reflectivity

S-type: ~ 0.23
L-type : 0.14-0.18
(Mainzer et al. 2011 ; Usui et al. 2013)

Surface reflectivity

Should have steeper phase curve than S-type asteroids
\rightarrow Our observation shows the opposite result
$\rightarrow 2012$ DA14 could have a peculiar surface property

Interpretation

Possible cause I

Weak gravitational field of a tiny asteroid has difficulty in retaining fine particles on its surface
\rightarrow Coated with coarse particles
\rightarrow Less effect of brightness decrease with phase angle

Possible cause II

2012 DA14 may have a high reflectivity surface

- Young age (\sim Myr) \rightarrow less surface modification?
- Frequent encounters with Earth freshen the surface by tidal stress (Binzel et al. 2010)?

Summary

- We performed time-series observations for a tiny asteroid 2012 DA14 $_{14}$ around its closest approach
- It is likely to rotate with a period of about 11 hours
- Our measurements show a significantly shallow phase curve, which is inconsistent with known L-type asteroids
- 2012 DA14 may be covered with a coarse particles and/or high reflectivity surface

