Time-series Photometry of Earth Flyby Asteroid 2012 DA₁₄

Tsuyoshi Terai Subaru Telescope

Surface properties

Composition → spectra , reflectivity

Structure → light scattering characteristics

Providing important clues as to

- Internal materials / structure
- Collisional evolution
- Thermal / aqueous alterations
- Linkage between asteroids and meteorites

Asteroid 2012 DA₁₄

- Near Earth asteroid named "Duende"
- Discovered on February 23, 2012, in Spain
- Tiny body with diameter of about 50 m

Earth Flyby of 2012 DA₁₄

- Passed closely to the Earth on Feb 15, 2013
- Approached to the distance of ~28,000 km

Feb 15, 2013 (UT)

Earth Flyby of 2012 DA₁₄

- Passed closely to the Earth on Feb 15, 2013
- Approached to the distance of ~28,000 km
 - → inside a geosynchronous orbit !

Aim of observation

Solar phase angle varied **20**° – **50**° during 2 hours around the closest approach

Allowing us to measure the phase curve precisely and efficiently

Great opportunity for investigating surface properties of tiny bodies

Difficulty

(2) Observable within only a short time (in Japan)

Strategy

- 1. Using **0.55-m Saitama-Univ. Telescope**
 - Bright objects are not easy to saturate
 - High mobility and operability
 - Allows pointing toward low elevation
- 2. With an 1k x 1k CCD camera mounted on **the prime focus**
 - → Wide field of view (32'x 32')

0.55-m telescope at Saitama Univ.

3. High-rate continuous imaging with very short exposure

Observation

- 2013 Feb 16 4:00-6:10 (JST; UT+9)
- R-band imaging with **0.5-sec** exposure
- Data acquisition every 2 sec
- Under sidereal tracking
- Keep the target in the field-of view with manual telescope operation

More than **2000** images have been obtained with good sky condition all over 2 hours

Measurements

- Photometry with an elongated circular aperture
- Flux calibration using background USNO stars

Additional observation

In the next night (Feb 16, 2013), 2012 DA₁₄ had

- Constant solar phase angle (82.2° 82.6° in the latter half night)
 - → Possible to obtain a brightness variation due to only the asteroid rotation
- Slower sky motion (~10 arcmin hr⁻¹)
- Fainter brightness of $V \sim 15$ mag

Follow-up observation with continuous R-band imaging of $T_{exp} = 10-60$ sec over 5 hours

Interpretation

Previous observations

Slope of asteroid phase curve is inversely correlated with surface reflectivity $(10^{\circ} < \alpha < 50^{\circ})$

(Belskaya & Shevchenko 2000)

Mean reflectivity

S-type: ~ 0.23

L-type: 0.14 - 0.18

(Mainzer et al. 2011; Usui et al. 2013)

Should have steeper phase curve than S-type asteroids

- → Our observation shows the opposite result
- → 2012 DA₁₄ could have a peculiar surface property

Interpretation

Possible cause I

Weak gravitational field of a tiny asteroid has difficulty in retaining fine particles on its surface

- → Coated with coarse particles
- → Less effect of brightness decrease with phase angle

Possible cause II

2012 DA₁₄ may have a high reflectivity surface

- Young age (~ Myr) → less surface modification ?
- Frequent encounters with Earth freshen the surface by tidal stress (Binzel et al. 2010) ?

Summary

- We performed time-series observations for a tiny asteroid 2012 DA₁₄ around its closest approach
- It is likely to rotate with a period of about 11 hours
- Our measurements show a significantly shallow phase curve, which is inconsistent with known L-type asteroids
- 2012 DA₁₄ may be covered with a coarse particles and/or high reflectivity surface