

Raven

a scientific and technical Multi-Object Adaptive Optics (MOAO) demonstrator

Olivier Lardière, Célia Blain, Colin Bradley, Reston Nash, Darryl Gamroth, Kate Jackson, Dave Andersen, Shin Oya, Yoshito Ono, & all RAVEN team

Why MOAO?

AO corrected FoV is limited by anisoplanetism

How to increase the corrected FoV?

Increase the # of guide stars and DMs

Multi-Object Adaptive Optics

- We don't need to correct the whole FoV, just a few patches
- MOAO uses multiple WFSs to reconstruct a volume of turbulence
- A single DM can be used to apply the optimal AO correction for any single location in the field

Multi-Object Adaptive Optics

- We don't need to correct the whole FoV, just a few patches
- MOAO uses multiple WFSs to reconstruct a volume of turbulence
- A single DM can be used to apply the optimal AO correction for any single location in the field
- MOAO correction is applied in open loop

MOAO Challenges

Pickoff system

 Up to 20 deployable pickoff mirrors are planned for ELTs (IRMOS, MOSAIC)

IRMOS (Eikenberry & Andersen 2006)

MOAO Challenges

Pickoff system

 Up to 20 deployable pickoff mirrors are planned for ELTs (IRMOS, MOSAIC)

Tomography

- Finite number of WFSs
- Requires turbulence model
- Noise & static error propagation

Open-loop control

- Wide-field WFS
- DM linearity & repeatability
- DM/WFS calibration

Goals of Raven

- Technical & Science demonstrator
 - Prepare MOAO instrumentation for ELTs
 - Get first science results from MOAO
- Raven = 1st MOAO system on an 8m-class telescope feeding a NIR science instrument (IRCS):
 - Founded by CFI (Canadian Fund for Innovation) ~ 4M\$
 - Designed and built by UVic, HIA/NRC and INO
 - Fast track project:
 - CoDR in Mar 2011
 - Shipped to Subaru in Jan. 2014,
 - First night in May 2014

Raven Concept

- 2 science targets are reimaged on the IRCS slit
- Each target can be positioned on the slit by moving the pickoff arms
- Each target can be rotated with the K-mirror

Optical Layout

CAD Model

Calibration Unit = Subaru Telescope in a box!

The 2 science channels implemented

Raven pick-off mirrors

Acquisition camera image

Field rotation tracking

Simulation for a real science case

Example for Stanek field on 20/06/2013

Hardware completed at UVic (July 2012)

- All the opto-mechanical components are installed and aligned
- Most of the electronics are mounted in the frame under the bench

Software architecture

The Raven Software is divided into 3 subsystems:

- The AO Sequencer (AOS) sets up the system and controls all non-real-time hardware, provides a user interface.
- The Real-Time Computer (RTC)
 processes the WFS pixels and
 generates the DM commands.
- The RTC Parameter Generator (RPG) updates the tomographic reconstructor as the conditions change using the WFS data (SLODAR or Learn&Apply).

RTC supports different AO modes

AO mode	Description
SCAO	Single Conjugated AO: Close loop on bright science target
MOAO	Multi-Object AO: NGS (+LGS) WFSs feed tomographic reconstructor, then feed the DM (open loop)
GLAO	Ground-layer AO: WFS slopes are averaged and sent to the DM (open loop)
HP MOAO + LP SCAO	 High-Pass-filtered MOAO + Low-Pass-filtered SCAO: Fast turbulence is corrected in open-loop MOAO, Slow turbulence & quasi-static aberrations are corrected in close-loop w/ the CLWFS running at low frame rate on a possibly faint compact science target.

AOS user interface in Matlab

Raven Acceptance Review at UVic, 26 Nov. 2014

Lab Results obtained at UVic

Science camera long-exposure images

Science camera long-exposure images

Science Camera long-exposure images

Bright & Wide Asterism + LGS

Conclusions

- Current performance meet science requirements
 - In agreement with error budget
 - Good image correction: Strehl>20-50%
 - Limiting magnitude R≥14.25 w/ CoG
- Upgrades & expected improvements
 - Correlation centroiding (+1 mag.)
 - Predictor (+2mag)

Conclusions

Current performa

- In agreement with e.
- Good image correcti
- Limiting magnitude

Upgrades & expe

- Correlation centroid
- Predictor (+2mag)

Conclusions

- Current performance meet science requirements
 - In agreement with error budget
 - Good image correction: Strehl>20-50%
 - Limiting magnitude R≥14.25 w/ CoG
- Upgrades & expected improvements
 - Correlation centroiding (+1 mag.)
 - Predictor (+2mag)
- Science instrument ready to go on sky:
 - Engineering nights in May and Aug 2014
 - Hoping for science nights in S14B and S15A
 - Little risks for science cases as GLAO meets science requirements too.

Raven arrival (Jan 6th)

Raven in the SimLab (Jan 7th)

30

Raven in Simlab (Jan 7/8)

Raven in Simlab (Jan 7/8)

32

Alignment in SimLab clean room

2014 Schedule

- ✓ Jan : Raven integration and alignment in the SimLab
- Feb-Mar:
 - Software upgrades & consolidation
 - Final tests
 - Prepare observation plan
- Mid-Apr: Raven ships to summit in BSIT truck
- May 13/14: First engineering nights
- Aug: 2nd run of engineering nights

Thank you

