Stellar populations of Galactic satellites and Near-field cosmology with HSC

Sakurako Okamoto Kavli Institute for Astronomy and Astrophysics, Peking University

dwarf galaxies in the Local Group

dwarf satellites around the Milky Way

Discoveries of UFD galaxies and streams

dSph satellites around the Milky Way

Name	Mv [mag]	D [kpc]	μ_0 [mag/arcsec 2]	Population	SFH
Sgr / Fornax Leo I / Sculptor Leo II / Carina	-13.4 / -13.0 -11.9 / -10.7 -9.6 / -9.3	24 / 138 250 / 79 204 / 105	25.4 / 23.4 22.4 / 23.7 24.0 / 25.5	inter-age ~ old	Extended or Episodic SF
Sextans Draco Ursa Minor	-9.5 -9.1 -8.9	93 83 64	26.2 25.3 25.5	old?	simple?
CVn I	-7.8	220	27.5	old?	simple?
UMa I Her Boo I Leo IV CVn II	-6.8 -6.0 -6.0 -4.9 -4.9	97 140 66 160 150	29.5 (-) 27.8 29.5 28.2	old?	simple?
UMa II / Coma Boo II,,,	-3.8/-3.7 -2.3	30 /44 42	- / - 27.7	old?	simple?
LeoT	-7.0	420	27.7	young? old?	Extended?

Metallicity gradients in MW satellites

Not well-described by simple closed-box model. Star formation more likely episodic.

VLT, MMT, high-R)

Metallicity-Luminosity relation in MW satellites

Metallicity dispersion increases as luminosity decreases

Inhomogeneous stochastic enrichment in low-mass halos?

Resolved old stellar population

Subaru/Suprime-Cam observation of UFDs & Draco, UMi, Sextans

Targets: Ursa Major I

Bootes I

Canes Venatici I

Canes Venatici II

Leo IV

Hercules

Leo T

+ each control fields

Draco 5 fields

Ursa Minor 2 fields

Sextans 26 fields (DART collaboration)

Band, exp-time:

V (10s / 600s~)

Ic (30s / 3000s~)

Seeing: 0.7~1.0"

Suprime-Cam: FoV = 34' x 27' pixel scale = 0.202"

Subaru/Suprime-Cam, CFHT/MegaCam observation of UFDs & Draco, UMi

CMDs within R_h

Distance = 223 ± 8 kpc ellipticity = 0.30 $R_C = 363 \pm 26 \text{ pc}$ $R_T = 3.5 \pm 0.8 \text{ kpc}$ $R_h = 596 \pm 25 \text{ pc}$

 $M_{V} = -7.93 \pm 0.2$ $\mu_{0} = 27.5 \pm 0.2$ [Fe/H] = -2.08 (by Kirby+2008)

Age~I2.6Gyr

Distance = 223 ± 8 kpc ellipticity = 0.30 $R_C = 363 \pm 26 \text{ pc}$ $R_T = 3.5 \pm 0.8 \text{ kpc}$ $R_h = 596 \pm 25 \text{ pc}$

 $M_V = -7.93 \pm 0.2$ $\mu_0 = 27.5 \pm 0.2$ [Fe/H] = -2.08 (by Kirby+2008)

HB morphology: center (red) outer (blue)

young/metal-rich

old/metal-poor

MS morphology: center (blue)

outer (red)

young/metal-poor

old/metal-rich

HB morphology: center (red) outer (blue)

young/metal-rich

old/metal-poor

MS morphology: center (blue)

outer (red)

young/metal-poor

old/metal-rich

Spatial distributions of each age population

Δδ [arcmin]

SF continued a few Gyr in the innermost region.

SF region becomes more and more centrally concentrated as the galaxy evolved.

Accreted between 7 and 9 Gyr ago?

(Rocha, Peter, & Bullock 2012)

SF was finally stopped when it fell into the Milky Way.

Setans

The radial distribution of the BS stars is similar to

<u></u>

dSph satellites around the Milky Way

Star Formation in dSphs

All UFDs (except for CVn I) are purely old & metal-poor, and brighter dSphs (Draco, Sextans, CVn I) have complex pops.

fainter UFDs had stopped SF earlier than brighter dSphs.

Gas was removed more efficiently in the progenitor of UFDs

- external effect on gas removal from UFD
 - √ re-ionization Shallower potential?
- internal effect on UFD
 - ✓ SNe feedback Shallower potential?
- external effect on regulating SF in brighter dSph
 - ✓ tidal effect and ram pressure of Milky Way (Galactic dSphs are not likely be TDG!)

Searching distant UFDs, faint streams, by HSC, SSP

Near field cosmology with Hyper Suprime-Cam

Galactic Archeology:

reconstruct the disrupted stellar substructures of the proto-galaxy, thereby obtaining a detailed physical picture of the formation and evolution of the Milky Way.

Formation history of Galactic structures

- Merging history of the Milky Way?
- Formation of old Galactic components? Accretion vs In-situ
- Star formation history of dwarf satellites?
- How are galaxies in general build up? M31? etc.?

The nature of Galactic dark matter

- How is dark matter distributed in the Milky Way?
- ♦ Dark matter of dwarf satellites; is LCDM correct?

All are recorded in old stellar populations

Galactic Archeology:

reconstruct the disrupted stellar substructures of the proto-galaxy, thereby obtaining a detailed physical picture of the formation and evolution of the Milky Way.

- Detection, Stellar population, spatial distribution
 Wide-field photometry SDSS, HSC, LSST
- Metallicity, V_{rad} (kinematics)
 LR/MR spectroscopy
 LAMOST, PFS, ngCFHT
- Abundance patterns, chemical tagging
 HR spectroscopy
 TMT, E-ELT, GMT, ngCFHT
- Proper motions, distances, OrbitsAstrometryGAIA

Wide-Field, Multi-objects

Hyper Suprime-Cam/Subaru

Princeton, Taiwan

FoV=1.77deg², Pixel=0.17"/pix, CCD=116 x 2k*4k, FL=Feb, 2013, Filters=grizy + several NB,

HSC SSP wide survey: 1,400 deg², grizy ~ 26mag, 2014A~ (5years)

Hyper Suprime-Cam SSP:

wide: $1,400 \text{ deg}^2$, grizy $\sim 26 \text{ mag}$, i ~ 26

Fall/Spring equatorial regions

deep: 28 deg^2 , girzy+3NBs, i~27

U deep: 3.5 deg², grizy+6NBs, i~28

Galactic Archeology with HSC SSP:

- Search missing Galactic faint satellites
- Search missing streams at the outer halo (>30kpc)
- Search missing distant faint galaxies in the LG
- Study the properties of known streams, dSphs and dIrrs
- Probe 3D structure of Galactic outer halo
- Search extremely LSB galaxies and their tidal features

Resolved stars

Missing satellite problem in CDM framework

SF was suppressed in low-mass halos?

Reionization (e.g. Gnedin+2000) SNe feedback and tidal effects (e.g. Larson+1974)

Fewer low-mass halos?

WDM etc. (e.g. Zentner+2003) Cusp/Core (e.g. Penarrubia+2010)

Centrally concentrated than M31 and any of LCDM simulations. Incomplete sample beyond ~100kpc?

HSC wide survey may find:

~20 new faint satellites, diffuse over-densities, stellar streams at 30-250kpc dwarf (isolated) galaxies at >250kpc, M_V < -7

Fall/Spring equatorial regions

HSC wide survey may find:

~20 new faint satellites and distant dwarf galaxies

True luminosity / radial distribution of satellites and their populations will be the strong constraints for the SF in low-mass halos

Stellar streams with HSC

- Complex populations
- Distance determination required <= BHB, PFS,</p>
- Heavy contaminants for the detection of unknown objects

Sgr stream (courtesy of M. Smith)

3D Halo structure by BHB stars

Blue Horizontal Branch star (core He-burning star)

- ♦ Comparatively bright: M_{g,BHB}~0.6mag,
- Accurate distance

(Okamoto+2012, Bootes dSph)

Halo 3D structure by BHB stars

Blue Horizontal Branch star

- ♦ Comparatively bright: M_{g,BHB}~0.6mag,
- Accurate distance

HSC D<400kpc

(Xue+2011, SDSS, spec)

BHB stars can be identified by z-filter

- Paschen features will be measured by z-filter to extract BHB stars from WD, MS-A stars
- the g-z colour will be used to separate blue stars from distant QSO

Paschen absorption in z-band

z-filter based photometric BHB sample

(Vickers+2012, SDSS)

- Paschen features will be measured by the i-z colour to extract BHB stars from WD, MS-A stars
- the g-z colour will be used to separate blue stars from distant QSO

77% pure, 51% complete !! (c.f. u-based : 74% pure, 57% complete)

Near field cosmology beyond the LG with HSC

M81, MW analogue which lies at 3.6Mpc

- True Nature of stellar contents in the large scale structures
- Age and Metallicity constraints for the extended component
- New stellar debris, satellites, streams, arcs in the entire region
- → Globular clusters in the M81 group

S-Cam (VI) (Barker+2

Near field cosmology beyond the LG with HSC

Conclusions

The UFDs do not have the same stellar pop as bright dSph, but have older population.

- ✓ The fainter UFDs (M_V>-7; Boo, UMaI, Her, LeoIV, CVnII) show a purely old and metal-poor population.
- ✓ The brighter UFDs (M_V =-7.8; CVn I) dSph shows the different spatial distribution of each evolutionally phases (BHB, RHB, RGB,,,).
- ✓ The stellar population of the brighter classical dSphs (Sextans, Draco, UMi) have the spatial gradient.

Near field cosmology with HSC:

- Search missing streams, debris, faint satellites of MW
- Search missing distant faint galaxies in the LG
- Study the properties of known streams, dSphs and dIrrs
- Probe 3D structure of Galactic outer halo
- Search extremely LSB galaxies and their tidal features
- ♦ M81 archeology

Resolved stars

Diffuse liahts