Deep multiband surface photometry on 45 star forming BCGs

Genoveva Micheva ${ }^{0}$,

Göran Östlin ${ }^{1}$, Erik Zackrisson ${ }^{1}$, Nils Bergvall ${ }^{2}$
0 Subaru Telescope
1 Stockholm University
2 Uppsala University

Outline

- Blue compact galaxies? Why?
- Observations
- Low vs. High luminosity BCGs
- Structural parameters
- Asymmetry \& concentration
- Conclusions

Blue Compact Galaxies（BCGs）

Metal－poor $10 \% Z_{\text {涵 }}$ to close to $Z_{\text {嚓 }}$
Gas－rich， $\mathrm{M}_{\mathrm{HI}} \sim 10^{6}-10^{9} \mathrm{M}_{\text {柬 }}$
（short）Bursts of star formation in an underlying old＂host＂galaxy

SFR（Ha）：0．1－24 $\mathrm{M}_{\text {潾／}} / \mathrm{yr}$
M／L：0．1－0．8
Emission line（HII）galaxies
In some ways reminiscent of truly young galaxies at high z

Nearby \Rightarrow surface photometry

Why study BCGs?

SF dwarfs most common type of galaxy in local Universe - difficult to study in large numbers

Starbursting dwarfs more exotic but easier to detect
At high z they contributed to reionization of Universe
Can't study dwarfs at high-z, must infer their properties from local analogs, i.e. either dwarfs, starbursting galaxies, or both (starbursting dwarfs \approx BCGs)

Problem:
-There are no exact analogs
-None of these are homogeneous groups: significant differences in morphology, total luminosity, colors, gas and dust content, kinematics, chemical abundances, star formation rates, stellar populations, dark matter content.

Observations

17446 raw images of 46 BCGs 6 years of observations (20012007)

NOT, NTT, VLT
Optical \& NIR broadband
UBVRI HK
Southern \& northern BCGs
High \& low luminosity BCGs

Micheva et al (2013a,b)

Total B luminosity

high luminosity BCGS

On average burst contributes
~3 mag to total luminosity
low luminosity BCGS

On average the burstimcreases the luminosity

We go deeper

UM462

Cairos et al. 2001

Micheva et al. 20130

SAMPLE 1 +(high lum)

- μ_{0} Vs h ${ }_{r}$
- $\mathrm{M}_{\mathrm{B}}^{\text {burst }}$ vs $\mathrm{M}_{\mathrm{b}}^{\text {host }}$
- Color coding: burst contribution
- Size coding: h_{r}
\rightarrow Extended \rightarrow lower μ_{0}
\rightarrow Extended \rightarrow stronger burst
\rightarrow Brightest host \neq strongest burst
\rightarrow Lines of constant burst contr.?
- μ_{0} VS h ${ }_{r}$
- $\mathrm{M}_{\mathrm{B}}^{\text {burst }} \mathrm{vS}_{\mathrm{b}}^{\text {host }}$
- Color coding: burst contribution
- Size coding: h_{r}
\rightarrow No correlation $h_{r}=>\mu_{0}$
\rightarrow Most are compact, low M_{B} but high μ_{0}
\rightarrow Not SF dominated

SAMPLE 1 (+high lum)

$\mu_{0} \operatorname{vs~}_{B_{B}}^{\text {host }}$
h_{r} vs $M_{B}^{\text {host }}$
$h_{r} \& \mu_{0}$ from $\mu_{B}=24-26{\text { mag } \operatorname{arcsec}^{-2}}^{-2}$ \longrightarrow consistent with BCD from the literature
$h_{r} \& \mu_{0}$ from $\mu_{B}=26-28 \mathrm{mag}_{\mathrm{arcsec}}{ }^{-2}$
\rightarrow consistent with dE, dl, and LSBG
dE, dl, BCDs from Papaderos et al. (2008); giant LSBGs from Sprayberry et al. (1995)

SAMPLE 2 (+low lum)
μ_{0} vs $M_{B}^{\text {host }}$
h_{r} vs $M_{B}^{\text {host }}$
$h_{r} \& \mu_{0}$ from both
$\mu_{\mathrm{B}}=24-26 \mathrm{mag}_{\mathrm{arcsec}}{ }^{-2}$ and $\mu_{B}=26-28 \mathrm{mag} \mathrm{arcsec}^{-2}$
\rightarrow consistent with BCD from the literature

Low vs High luminosity BCGs

- Behave in different ways
1.Dynamically young luminous irregular galaxies
2.Fainter objects, regular outer isophotes
(Telles et al 1997)
- Different progenitors/evolution histories

Color coding: morphological class

Asymmetry

Morphology reveals dynamical history: mergers/interactions or lack thereof.

$$
\phi=180
$$

What contributes to the asymmetry?

"Flocculent" component: due to star formation
"Dynamical" component: due to merger, tidal interaction
(Conselice et al. 2000)

Petrosian Asymmetry

Minimum, $\phi=180$

- Radius r(n[0.2])
- Small (~ 0.2) optical small NIR $A_{p}-n E$ BCGs
- Small optical large NIR $A_{p}-i E$ BCGs
- Large (~ 0.4) optical large NIR A_{p} - iI BCGs
- Optical A dominated by star formation regions (a.k.a.
"flocculent" component)

Sample 2

Identifying mergers

SAMPLE 2

- B-V vs Petrosian A (R or I band)
- Fiducial colorasymmetry sequence (Conselice et al. 2000)
- Color coding: Petrosian A (blue)
- Size coding: h_{r}

Identifying mergers

- B-V vs Petrosian A
- Fiducial colorasymmetry sequence (Conselice et al. 2000)
- Size coding: h_{r}

Identifying mergers

The dynamical component

- Starburst is in the way \Rightarrow mask it out
- $\mu_{\text {Opt }} \leq 25$ mag $\operatorname{arcsec}^{-2}$ set to 25
- $\mu_{\mathrm{NIR}} \leq 21 \mathrm{mag} \operatorname{arcsec}^{-2}$ set to 21
Smoothed by $1 \times 1 \mathrm{kpc}{ }^{\text {ci }}$

Asymmetry correlations

$A_{H}{ }^{\prime}(I)=0.62 \times A_{P}-0.003$

Normal galaxies: $\mathrm{A}_{\mathrm{G}}{ }^{\prime}=0.67 \times \mathrm{A}_{\mathrm{P}}+0.01$
(Conselice 2003)

Dotted line: Conselice 2003 for normal galaxies
$\mathbf{A}_{\mathrm{dyn}}$ does not correlate with \mathbf{A}_{p}
A_{p} - Petrosian asym.
A_{p}^{p} - Petrosian asym, filtered
A_{H} - Holmberg asym
$A_{H}{ }^{\prime}$ - Holmberg asym, filtered
$A_{d y n}$ - Dynamicalásym, filtered

Sample 1

- Burst \% vs Ap
- Size coding: h_{r}
- Black: μ_{0}, h_{r} consistent with giant LSBGs

Concentration

- $\mathrm{R}_{20}=20 \%$ of growth cure
- $\mathrm{R}_{80}=80 \%$ of growth
curve

Concentration vs Asymmetry

Normal galaxies from Conselice et al. 2000
BCGs/ELGs - large asymmetries, small concentration Impossible to tell BCGs from ELGs

Conclusions

Low \& high luminosity BCGs behave in distinctly different ways (structural parameters μ_{B}, h_{r}, A , but not C)

Tentative link to giant LSBGs as hosts of high luminosity BCGs

Dynamical asymmetry component catches mergers more successfully in high luminosity BCGs
Change in optical/NIR asymmetry reflects morphological class

Optical Asym - an OK proxy for flocculent component; NIR Asym - good proxy for dynamical component

- $\mathrm{h}_{\mathrm{r}} \mathrm{vs} \mathrm{M}_{\mathrm{B}}$
- $\mu_{0} \operatorname{vS~M}_{B}$
- B-V vs A dyn
- Burst \% vs A dyn
- Color coding: morphological class

Clumpiness

normal+ULIRGs (Conselice 2003)

B-V vs. S

$B-V=-0.88 \pm 0.07 \times S^{\prime}+0.85 \pm 0.02$ (Conselice 2003)

- Normal galaxies (Conselice 2003)
- BCGs (S1+S2)

ESO185-13 25.8/27.8

 $0 \cdot 0_{0} \cdot 0^{\circ}$ $\therefore 0.0 \cdot 50$

ESO421-02 25.9/27.9

ESO338-04 25.7/27.7

HL293B
$25.7 / 27.7$

MK930 25.5/27.5

Tol0341-407 26.0/28.0

UM238
$26.0 / 28.0$

SBS0335-052EW 25.8/27.8

UM160
26.0/28.0

Sample 2

