Black hole – galaxy scaling relations and gas outflow

Outline

- 1. Black hole galaxy scaling relation and its evolution
- 2. Census of Ionized gas outflows in type 2 AGNs

Thanks to

Daeseong Park (UCI), Kenta Matsuoka, Jaejin Shin, Yosep Yoon (SNU), Hyun-Jin Bae (Yonsei)

&

Tommaso Treu (UCSB), Aaron Barth (UCI), Vardha Bennert (Cal. Poly), Matt Malkan (UCLA), Roger Blandford (Stanford), Brandon Kelly (UCSB), Andreas Schulze (IPMU)...

Part 1.

Black hole-galaxy scaling relation and its evolution

BH-Galaxy Scaling Relations

• BH mass scaling relations imply the connection between BH growth and galaxy evolution (Ferraresse+00; Gebhardt+00, Gultekin+09, Kormendy & Ho 13).

BH-galaxy scaling relations

Coevolution?

- Self regulation between BH growth and galaxy evolution
- AGN feedback (e.g., Di Matteo+05, Hopkins+06, Croton+06; Bower+06; Somerville+08, Dubois+13.....)

Non-causality?

• Due to galaxy merging (Peng 07; Jahnke+11)

Dependence on galaxy type, mass, & evolution history

- Classical vs. pseudo bulges (Kormendy & Ho 2013)
- Early vs. late type galaxies (McConnell & Ma 2013)
- Merging vs. secular evolution (e.g., Croton 06, Shankar+13)

Evolution of the Scaling Relations

- Chicken or egg?
- Observational constraint is necessary.

Volonteri 2012

Present-day M_{BH}-sigma relation

Updates of the quiescent galaxy M_{BH}-sigma relation

- Larger sample: 72 objects with new M_{BH} measurements (McConnell & Ma 13; Kuo+11)
- Improved dynamical modeling (e.g., Schulze +10)
- Steeper slop: $M_{BH} \sim \sigma^5$
- Larger scatter ~0.4-0.5 dex
- Dependence on galaxy types

What about stellar velocity dispersions?

- Stellar velocity dispersions are not uniformly measured, hard to constrain intrinsic scatter.
- Rotation & aperture effects should be corrected.

Aperture and rotation effects

- Rotation effects should be corrected based on spatially resolved kinematics measurements
- Rotation added (McConnell+13, Gultekin+09)

$$\sigma_*^2 = \frac{\int_{-R_e}^{R_e} (\sigma_*(r)^2 + V(r)^2) \, I(r) \, \mathrm{d}r}{\int_{-R_e}^{R_e} I(r) \, \mathrm{d}r}$$

 Rotation-corrected (Woo+13, see also for AGN sample, Bennert+11, Harris+12)

$$\sigma_* = \frac{\int_{-R_e}^{R_e} \sigma_*(r) \, I(r) \, \mathrm{d}r}{\int_{-R}^R I(r) \, \mathrm{d}r}$$

Re-visiting the $M_{BH} - \sigma$ relation of quiescent galaxies

- New high S/N spectra from Palomar Triplespec (H-band)
- For 31 early-type galaxies
- Correcting for rotation and aperture effect

Palomar Triplespec data

Kang, Woo + 13

Comparison between optical and near-IR measurements

 Stellar velocity dispersions measured from optical and IR (H-band) spectra are consistent.

Kang, Woo et al. 2013

Cf. Based on K-band spectra

Silge & Gebhardt 2003

Vanderbeke et al. 2011

Radial distributions of velocity and velocity dispersion

- Disk component is present in many early-type galaxies.
- Rotation & aperture effects should be corrected.
- Luminosity-weighted velocity dispersion should be used.

$$\sigma_* = rac{\int_{-R_e}^{R_e} \sigma_*(r) \, I(r) \, \mathrm{d}r}{\int_{-R}^R I(r) \, \mathrm{d}r}$$

Rotation effect on the velocity dispersion

• SVD changes by up to ~20%, if the rotation effect is corrected.

• Slope becomes slightly shallower due to smaller SVD.

Kang et al. 2013

• For late-type galaxies (σ < V), the rotation effect is expected to be much stronger.

Redefining the M_{BH}-sigma relation with rotation-free velocity dispersion

- Late-type galaxies, in particular edge-on galaxies, should be corrected for rotational broadening.
 - Rotation added

$$\sigma_*^2 = \frac{\int_{-R_e}^{R_e} (\sigma_*(r)^2 + V(r)^2) \, I(r) \, \mathrm{d}r}{\int_{-R_e}^{R_e} I(r) \, \mathrm{d}r}$$

Rotation-free

$$\sigma_* = rac{\int_{-R_e}^{R_e} \sigma_*(r) \, I(r) \, \mathrm{d}r}{\int_{-R}^R I(r) \, \mathrm{d}r}$$

Kang, Woo + 13

AGN M_{BH} estimates partly depend on the M-sigma relation

AGN black hole mass: $M_{BH} = f R_{BLR} V^2 / G$

- By matching the M-sigma relations of RM AGNs and inactive galaxies, the virial factor (f) has been determined (Onken+04, Woo+10, 13, Park+12).
- Slopes are consistent within the errors.
- f = 5.2, implying non-spherical distribution of BLR

Woo et al. 2010

Updates of the reverberation sample

- ~50 reverberation time lags (Lick AGN Monitoring Project, OSU group project)
- better Hb line width measurements based on multi-component spectral decomposition (Barth+11, Park+12)
- ~25 stellar velocity dispersion measurements based on AO, etc (Watson+08, Woo+10, 13, Grier+13)
- Independent virial factor
 determination for 2 objects based on
 velocity-resolved time-lags &
 modeling (Brewer+11, Pancost+13)

Example of multicomponent fitting with stellar, FeII emission, blended emission lines.

Park, Woo + 12

Comparison between inactive and active galaxies

- quiescent galaxies: slope: 5.31±0.33
- AGN: new and updated M_{BH} & σ slope: 3.46±0.61
- Is the relation same?
- Truncation in mass distribution

Active galaxies seem to follow the same M-sigma relation

- quiescent galaxies: slope: 5.31±0.33
- AGN: new and updated M_{BH} & σ slope: 3.46±0.61, f=5.1
- Joint fit (Quiescent galaxies + AGNs):

slope: 4.93 ± 0.28 , f=5.9

$$\log(M_{\rm BH}/M_{\odot}) = \alpha + \beta \log(\sigma_*/200 \ {\rm km \ s^{-1}})$$

$$\chi^2 = \sum_{i=1}^{N} \frac{(\mu_i - \alpha - \beta s_i)^2}{\sigma_{\mu,i}^2 + \beta^2 \sigma_{s,i}^2 + \epsilon_0^2} + \sum_{j=1}^{M} \frac{(\mu_{\text{VP},j} + \log f - \alpha - \beta s_j)^2}{\sigma_{\mu,j}^2 + \beta^2 \sigma_{s,j}^2 + \epsilon_0^2}$$

relocity dispersion (σ*) km/s

Woo et al. 2013

Comparison between inactive and active galaxies

- Intrinsic scatter similar between inactive & active samples.
- Implies that <f> is close to the true value and the range of f among type 1 AGNs is not large.
- For future we may obtain f for a number of individual objects based on velocityresolved time-lags & modeling (Brewer+11, Pancost+13)

Virial factor depends on the M-sigma slope

• f factor can change by 0.2-0.3 dex, depending on the slope.

Cosmic evolution of M_{BH} -sigma relation

Evolution of the Scaling Relations

- Chicken or egg?
- Observational constraint is necessary.

Volonteri 2012

Cosmic evolution of M_{BH} - σ & M_{BH} - L_{bulge} relations

Collaborators: Daeseong Park (UCI), Tommaso Treu (UCSB), Vardha Bennert (Calpoly), Matt Malkan (UCLA), & Roger Blandford (Stanford)

Sample

- 2 redshift windows: z~0.4 and z~0.6 to avoid sky lines.
- Lookback time is 4 and 6 Gyr.
- Selected 37 objects at z~0.4 & 15 objects at z~0.6 from SDSS,
 based on broad Hβ

Observations

- Keck LRIS spectroscopy
- HST ACS/NICMOS/WFC3 imaging

Measured for 34 objects, no measurements for 18

Woo + 06, 08, 14

Measuring host galaxy bulge luminosity

psf/bulge/disk decomposition with HST-ACS/NICMOS/WFC3 images

Treu+07, Bennert+10, Park+14

BH-galaxy scaling relations 4-6 Gyr ago

Distant bulges are smaller/less luminous than local bulges at fixed M_{BH} .

Woo+06, 08, 14 (in prep)

Treu+07, Bennert+10, Park+14 (in prep)

Evolution of the M_{BH} - sigma Relation

- Black holes seem to live in smaller galaxies in the past.
- Evolution is Independent of the virial factor
- Mass-dependent evolution

Woo + 14 (in prep).

Evolution of the M_{BH} - L_{bulge} Relation

- Black holes seem to live in smaller galaxies in the past.
- Evolution is Independent of the virial factor
- Mass-dependent evolution

Woo + 14 (in prep).

Selection effect?

• Luminosity bias:

Since BHM determined from L, more massive BHs are selected. (strong effect at $M_{\rm BH} > 10^9$)

Host galaxy measurability:
 For given AGN sample,
 larger galaxies are easier
 to be measured

Recent evolution of (active) bulges?

- 1/3 shows disturbed morphology (cf. local Swift-BAT sample by Kross+10,11)
- Galaxy merging/interaction is still playing at this mass scale
- Transformation of rotation-supported to pressure-supported

Evolution of the scaling relation

• Black holes seem to live in smaller bulges (galaxies) in the past (e.g., Peng+06, Merloni+10, Schramm & Silverman 13...)

Park et al. 2014 in prep.

Bennert et al. 2011

Issues on single-epoch $M_{\rm BH}$ estimates for high-z AGNs

- more uncertain due to additional calibration for MgII or CIV.
- could be systematically lower or higher depending on calibration.

New calibration of the CIV-based M_{BH} estimator

M_{BH} estimates based on Hb/MgII/CIV lines

Current limitations/challenges

- The uncertainty of BH mass estimates is a limiting factor.
- More representative local AGN sample is needed (reverberation sample may be biased).
- Stellar velocity dispersion of AGN host galaxies: Challenging at z~0.5. Possible at z~1?
- Bulge/disk decomposition with HST resolution: Challenging for small bulges at z~0.5. Total luminosity?

Summary I

- Accounting for the difference in mass distribution, active and inactive galaxies at z~0 seem to follow the same M-sigma relation.
- The reverberation sample is not representative for AGNs. We need a large sample covering high L and high BH mass.
- For low mass, disk-dominant galaxies, rotation effect should be corrected for measuring stellar velocity dispersion of bulges.
- At fixed M_{BH}, bulges in 4-6 Gyrs ago appear to be smaller/less luminous compared to the local sample, implying that BH growth predates final assembly of spheroid at intermediate mass scale.

Part 2.

A census of ionized gas outflows in type 2 AGNs

Example, a nearby Seyfert 2, NGC 1068

Outflows in NLR

- Bi-conical (not rotation)
- Acceleration & deceleration
- Relatively high velocity

Central 720pc

(Crenshaw+00)

Case for a nearby Seyfert 2, NGC 1068

- Bi-conical outflows
- Wide opening angle
- Obscuration due to the dust in stellar disk

An IFU example (Westoby+12)

Outflows fractions based on integrated spectra

Type 1 AGNs

- Velocity offset of OIII with resp
- Outflow fraction is ~50% (Boros

Type 2 AGNs

- V_{offset} of OIII with respect to lov
- Outflow fraction is 25-40% (Cr

Motivations

- Are low-ionization lines offsetting
- Reliable systematic velocity is re
- Constrain outflow fraction at z~u

Boroson 05

Sample: SDSS Type 2 AGNs

- Redshift: 0.02 < z < 0.1
- Total ~60,000 galaxies with S/N >3 for emission lines
- 22,000 type 2 AGNs
- 2,000 Star-forming galaxies for comparison

(Bae & Woo 2014 submitted)

Emission line flux ratio diagram

Outflow AGNs

• Determine $V_{offset} = V(OIII) - V(Ha)$ as done for type 1 AGNs

 $V_{\text{offset}} > 50 \text{ km/s} : \sim 9\%$

 $V_{\text{offset}} > 30 \text{ km/s} : \sim 24\%$

Group A

Group B

Vel. offsets of OIII vs. Ha w.r.t stellar lines

- 1. Voff (OIII) $> 50 \text{ km/s} (\sim 13\%)$.
- 2. Voff (OIII) $> 30 \text{ km/s} (\sim 26\%)$.

Vel. offsets of OIII vs. Ha

We find two classes:

Group A: Voff (OIII) > Voff (Ha) - decelerating? (\sim 8%).

Group B: Voff (OIII) ~ Voff (Ha) - ambiguous?(~5%).

Group A (V > 200 km/s)

Group B (V > 200 km/s)

- Merging/interacting galaxies
- Offset (insprialling /recoiling) BHs?
- Gas & stellar decoupled?

Velocity dispersions of OIII and Ha

- AGNs have much broader lines than SF galaxies.
- Outflows show long tail toward high velocity dispersion.
- OIII is broader than Ha in Group A.

Velocity offset vs. Eddington ratio

High vel. outflows are preferentially hosted by high ER AGNs

Some high ER AGNs have low outflow vel., presumably due to projection

Integrated OIII velocity offset is related to galaxy inclination

- \sim 260 AGN Outflows with V > 100 km/s
- Lack of face-on galaxies among R-shifted OIII
- Consistent with a biconical outflows and dust obscuration (Crenshaw+10)

Outflow fraction

- Type 1 AGNs: ~50 % with [O III] velocity > 50 km/s, (e.g., Boroson 2005; Komossa et al. 2008; Crenshaw et al. 2010; Zhang et al. 2011).
- Type 2 AGNs: ~13% with [O III] velocity > 50 km/s,
 ~26% with [O III] velocity > 30 km/s.
- The lower fraction of type 2 AGNs is presumably due to the projection effect.

Summary

- Using 22,000 type 2 AGNs, we find ~13% of AGNs showing outflows with LOS velocity > 50 km/s. The lower outflow fraction compared to type 1s is presumably due to projection effect.
- AGNs with larger outflow velocity preferentially have higher Eddington ratio, implying that outflow is radiation-driven.
- The distribution of the velocity offset measured from integrated spectra is consistent with a bi-conical outflow + dust obscuration scenario.
- For ~5% of AGNs, OIII and Ha show comparable velocity, indicating a complex origin, e.g., non-decelerating outflows or inspiralling/recoiling black holes.
- Following IFU observations can constrain how AGNs affect ISM and star formation in the host galaxies.