What we demand for the next generation Subaru AO
- Kick off -

1. Current +
2. Next-generation

Masayuki Akiyama
(Astronomical Institute, Tohoku Univ.)

2010/09/10
What do we demand for “current+” system

1. Sky coverage, larger is better

 For example, good correction with R=18mag TT-guide star with 60” distance, see later.

 NIR TT-guide star (TT-correction with AO-corrected stars) ?

2. Information on PSF at target position. Possible ? How reliable ?

 Especially for narrow fov observations. Accuracy with FWHM=0.10”+-0.02”, see later.
Sky coverage limitation

Yes of course with NGS AO

K-band SR~0.2 with R=13mag @ 30" (blue) ~6%@SXDS

K-band SR~0.1 with R=15mag @ 30" (red) ~3%@SXDS

~1000 X-ray sources are plotted with small dots
Sky coverage limitation

Even with LGS AO (Keck LGS)

K-band SR\~0.2 with R=16mag @ 40” (blue) \~16%@SXDS

K-band SR\~0.1 with R=18mag @ 60” (red) \~58%@SXDS

SXDS fov

\~1000 X-ray sources are plotted with small dots
PSF estimation

Feasible? With what accuracy?

- No estimation necessary for point source spectroscopy.
- Required accuracy is not so high for morphological studies of distant galaxies. Best fit morphological parameters do not severely depend on model PSF used.

Very high accuracy required for QSO host galaxy studies.
Next-generation general-purpose AO and Subaru’s originality

Targeting “cutting-edge + big size + general-purpose” = “costly and time-consuming” instrument? Or chose either of one?
Next-generation general-purpose AO and Subaru’s originality

Unique AO instrument of ground-based 8-10m class telescope in the era of JWST(2014 launch)?

Competitive instrument even in the TMT(2018?) era?

Wide field? At least 5-10’ scale FoV. High-resolution version of NIR (prime-focus) wide-FoV camera.

2.2’ x 2.2’ x 2 0.03” sampling with JWST NIRcam

High-spectral resolution? R=3000 or higher with wide spectral coverage, at least one octave.

R<1000-3000 0.1-0.2” sampling with JWST NIRspec

Shorter wavelength range? High-spatial resolution observation in wavelength range 1um or shorter.
NIRCam Design Features
U of Arizona (M. Rieke) plus Lockheed ATC

- NIRCam images the 0.6 to 5\(\mu\)m (1.7 - 5\(\mu\)m prime) range
 - Dichroic used to split range into short (0.6-2.3\(\mu\)m) and long (2.4-5\(\mu\)m) sections
 - Nyquist sampling at 2 and 4\(\mu\)m
 - 2.2 arc min x 4.4 arc min total field of view seen in two colors (40 MPixels)
 - Coronagraphic capability for both short and long wavelengths
- NIRCam is the wavefront sensor
 - Must be fully redundant
 - Dual filter/pupil wheels to accommodate WFS hardware
 - Pupil imaging lens to check optical alignment
NIRSpec

• Multi-object dispersive spectrograph (MOS) for 1-5 µm
• R~1000 or R~100 for MOS
• MOS pixels ~0.2", and cover a ~ ~3’x3’ field
• Capable of observing > 100 objects simultaneously.
• Several fixed slits and an IFU (3”x3”) are also available with R as high as 3000.
• Being built by the European Space Agency
Directions, which do you want?

Ultra-deep observation of individual target / 個別天体の深観測：

- Spectroscopy of very high-redshift galaxies: Lya emitter @ z=7
- High-SN, R~10,000 spectroscopy of QSOs: GP trough of z=6-7 QSOs

<table>
<thead>
<tr>
<th>Require higher SR</th>
<th>Direction 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extending shorter wavelength range</td>
<td>~ Keck-NGAO</td>
</tr>
<tr>
<td>With high sky coverage (targets are very rare)</td>
<td>~ Gemini-GEMS</td>
</tr>
</tbody>
</table>

Deep observation of multiple targets / 多天体の深観測：

- NIR spec. of red gals at intermediate z: Galaxies, AGNs @ z=1-3

<table>
<thead>
<tr>
<th>Moderate SR</th>
<th>Direction 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wide FoV multi-object</td>
<td>Gemini-GEMS</td>
</tr>
</tbody>
</table>

Very-high spatial resolution of individual / 個別天体高空間分解能観測：

- High resolution observation of nearby galaxies: AGNs, stellar pops galaxies

 | OPTICAL w.length range JWST will not reach, | Direction 3 |
 | Higher spatial resolution than HST in optical | Subaru-SCExAO? |
 | | Gemini-GPI? |
Sky coverage limitation with next-gen.

With MCAO(Gemini GEMS)

2′ fov covered with 3 TT guide stars brighter than R=18.5

10% sky coverage at galactic pole with SR 0.6 in K-band

3 R<18.5 stars within 60″ = 15% @SXDS

Degraded operation mode with 1 or 2 TTgs
GEMS is wide-field MCAO, but the expected performance is more closer to Keck NGAO (Direction 1), i.e. small FoV.
Sky coverage limitation with next-gen.

With tomographic-AO (Keck NGAO)

Requirements similar to Gemini GEMS?
What SR do we want?

Fraction of light within a slit varies with slit width. Different lines represent different SR ratio (shown with small numbers).

- **Seeing-limited**
 - 0.24" slit: 1/11 = 2.1mag deeper
 - 0.12" slit: 1/44 = 1.3mag deeper

- 0.80" slit = 1.3mag deeper

0.06" @ 8m K-band
What SR do we want?

If background limited and point source, then, 3 mag deeper than current seeing limited observation with SR=0.7-0.8.

60-80% encircled 0.8 mag deeper

SR~0.2

~30-40%

~0.4

0.12” slit
1/44
=2.1mag deeper

0.24” slit
1/11
=1.3mag deeper

0.80” slit

0.06” @ 8m K-band
BUT, the gain with higher SR is small for spec. of entire gals (extended obj.)

Narrower slits can be used for point sources with higher SR, BUT,

Galaxies at the intermediate redshifts (or at even higher redshifts) are significantly extended than diffraction limit, the gain with high SR will be smaller.

Of course, you can do spatially-resolved studies with high SR…
Spatially-resolved obs. of distant gals

Z=3 galaxy is observed with effectively 100pc (20-40mas) resolution thanks to gravitational lensing effect (Stark et al. 2008 Nature, 455, 755).

Clear rotation is detected for the first time with this very high spatial resolution.

Need to resolve 10km/s scale velocity structure, R~10,000 is necessary.

Major velocity structure within 1kpc (~0.1")

Considering required amount of light to achieve high-spatial and high-spectral resolution, this science case is for TMT ??
Target SR and required elements

![Graph showing elements versus aperture and SR]

- AO36
- AO188
- AO1000

Direction 2

Direction 1,3
What kind of inst do we need if dir 2?

Wide FoV (d=8’) MOAO multi-object spec (only with long slits=no IFUs), R=3,000 double-beam spectrograph with zJHK coverage?

Difficult to realize due to Rayleigh-scattering?
Summary (in J)

個別天体の深観測： HSCデータベースとの親和性は高い

高赤方偏移の銀河の分光：Lya emitter @ z=7

QSOの中分散(R~10,000)高SN分光：Gun-Peterson trough of z=6-7 QSOs

よう高いSR (0.6-0.7 @ K-band = 1,000 elements) で、
=より短い波長 (~9000Aなど) で、
高い sky coverage (>50% : GS:R=18mag,60”,1GS) で。
~ Keck-NGAO

Direction 1

多天体の深観測： MOIRCSなどの蓄積

中赤方偏移の赤い銀河の分光観測：Galaxies, AGNs @ z=1-3

そこそこのSR (0.1-0.3 @ K-band ~ 100 elements) で、
広い視野(5-10’ scale)で多天体同時に。

Direction 2

個別天体の高空間分解能観測： わが道を行く？

銀河中心の高空間分解能観測：AGN, stellar pops in local galaxies

JWST の届かないより短い波長(<9000A)で。
HSTで分解できなかったものを分解(SR=0.1@1um)。

Direction 3

Subaru-SCExAO?
Future works: until the next WS

Directions 1, 3

Simulate Keck NGS AO-like, Gemini GEMS-like instruments

1. The expected performance can be confirmed?
2. How shorter wavelength range can we reach?

Direction 2

Simulate trade-off between SR and size of FoV.

Next round, which direction is the most attractive scientifically? Which one do you want?

Do we need next generation general-purpose AO? Small-scale grade up (SCeXAO, IRWFS etc) or engineering (RAVEN) are not sufficient?