Studying high-redshift AGN host galaxies & co-evolution with Adaptive Optics

Malte Schramm Kavli IPMU

Sapporo 14.6.2013

Motivation for AO to study AGN hosts

Redshift evolution of the scaling relations

High resolution imaging mainly with HST

HST suited for z<2.5 to probe rest-frame optical

z<1 AGN host galaxies with ACS

z=1.5-2

- lacksquare Schramm[2012] [$M_{
 m bulge}$]
- \diamond Haering&Rix[2004] [$M_{
 m dyn}$]
- lack Jahnke[2009] [$M_{\rm tot}$]
- \Rightarrow Bennert[2011] [$M_{
 m bulge}$]
- \circ Merloni[2009] [M_{tot}]
- Jahnke[2004] [$M_{
 m bulge}$]
- \times Cisternas[2011] [M_{tot}]
- Schramm[2013 in prep.] $[M_{
 m bulge}]$
- + Schramm[2008] $[M_{tot}]$

Essential for the analysis: the PSF

Necessary Information:

- (1) PSF at QSO position
- → usually not known
- (2) PSF from nearby stars
- (3) PSF variability

PSF variability from open cluster observations M35

Fit each star with analytic profiles

Two Possibilities

 Many stars in the FoV to model PSF variability Strong constraints on the PSF position (close to target and at same distance from GS)

Important: PSF at least critically sampled

Successfully resolved AGN hosts with current IRCS+AO188

MBH-MBulge Relation at z~3-4

BUT: We need many nights (Minowa-san can confirm)

Reminder: GLAO as a survey instrument

ECDFS 1100 armin²

Selection of high-z Quasars suitable for AO

SDSS DR7: ~7000 total at 3<z<4

~3% suitable for current AO/NGS

<5% suitable for current AO/LGS

Criteria for a NGS:

- PSF star at r<10" [strong constraint]
- bright guide star at r<25"
- spectrum to estimate $M_{\mbox{\scriptsize BH}}$
- more stars in FOV for PSF
- -(distance PSF-GS = QSO-GS) [strong constraint]

We are probing the most massive systems

What is a good target for current AO

Advantage of GLAO

- Basically no limitations on the targets due to wide FoV (field stars for PSF modeling & sufficient GS candidates)
- Low luminosity targets possible (FoV needed)
- Large selection bias free samples possible (SUBARU GLAO as a survey instrument)

Studying BH growth with GLAO

Look at the smallest BHs in galaxies

X-ray selected low-mass BHs z<1

Look for X-ray excess in low-mass galaxies

3 promising cases at z<0.3

So far: ~30 candidates z<1 in ECDFS

Assuming the local scaling relations

Schramm et al 2013b

 $\log M_{BH} = 5.2-6.2 M_{sol}$

We can study the occupation fractions of low-mass BHs and their hosts

Low-mass BHs in low-mass galaxies

Three galaxies: three different morphologies

Looking at Ha with IFU or NB

Radial color profile

Final application:
ENLR size – luminosity relation,
star formation and resolved gas
phase metalicites of AGN host
galaxies

Origin of the ionized gas: IFU studies of

Husemann et al. in prep

Local sample: 19 AGN hosts with VIMOS

AGN cont. Luminosity

- Flux limited sample
- Blue bulge dominated QSO hosts
- Disks, ellipticals, interacting, mergers
 - 27"x27" FoV, sampling 0.66"

Oxygen abundance gradients

Oxygen abundance gradients

Summary

- At least critically sampled GLAO to study selection bias free samples of high redshift AGN host to probe BH-host co-evolution (broad & narrow band imaging)
- BH formation and growth through NB or IFU studies of low-mass Bhs
- Redshift evolution of: ENLR, ionization origin and resolved gas phase metalicites of AGN host galaxies