Environmental Effects on Galaxy Dynamics and Star Formation in the Distant Universe

MAHALO-Subaru collaboration

Yusei Koyama (Durham → NAOJ)

Tadayuki Kodama (NAOJ), Ken-ichi Tadaki (NAOJ),

Masao Hayashi (ICRR), Ichi Tanaka (NAOJ), Rhythm Shimakawa (Sokendai),

Ian Smail (Durham), Mark Swinbank (Durham)

Outline

- 1. Background
- 2. Our approach: MAHALO-Subaru

3. Key Results from MAHALO

4. Future with Subaru+GLAO

Galaxy Clusters: filled with red & dead early-types

Coma cluster @ z=0.02

Morphology evolution in clusters

Group environment is the key?

"Poor groups" are likely the major sites of S0 galaxy formation.

Dusty galaxies in groups: 50 progenitors?

Our panoramic $H\alpha$ survey with S-Cam (NB921) of Abell851 cluster at z=0.4 revealed a large number of red SF galaxies in cluster surrounding groups.

■:red H α emitter (B-I>2) □:blue H α emitter (B-I<2)

Dusty galaxies show "disk" kinematics

Further supporting our idea that red $H\alpha$ emitters are S0 progenitors.

Dusty galaxies show "disk" kinematics

Further supporting our idea that red $H\alpha$ emitters are S0 progenitors.

MAHALO-Subaru project

MApping H-Alpha and Lines of Oxygen with Subaru

Narrow-band Ha/[OII] emission-line survey for 0.4<z<2.5

environ-	target	z	line	λ	camera	NB-filter	conti-	status
ment		+1.0		(μm)			nuum	(as of Nov 2011)
Low-z	CL0024+1652	0.395	$H\alpha$	0.916	Suprime-Cam	NB912	z'	Kodama+'04
cluster	CL0939+4713	0.407	$H\alpha$	0.923	Suprime-Cam	NB921	z'	Koyama+'11
	RXJ1716+6708	0.813	$H\alpha$	1.190	MOIRCS	NB1190	J	Koyama+'10
		1 3 11 11 10 10	[O II]	0.676	Suprime-Cam	NA671	R	observed
High-z	XCSJ2215-1738	1.457	[O II]	0.916	Suprime-Cam	NB912, NB921	z'	Hayashi+'10,11
cluster	4C65.22	1.516	$H\alpha$	1.651	MOIRCS	NB1657	H	observed
	Q0835 + 580	1.534	$H\alpha$	1.664	MOIRCS	NB1657	H	observed
	CL0332-2742	1.61	[O II]	0.973	Suprime-Cam	NB973	y	observed
	ClGJ0218.3-0510	1.62	[O II]	0.977	Suprime-Cam	NB973	y	Tadaki+'12
Proto-	PKS1138-262	2.156	$H\alpha$	2.071	MOIRCS	NB2071	$K_{ m s}$	Koyama+'13a
cluster	4C23.56	2.483	$H\alpha$	2.286	MOIRCS	NB2288	$K_{ m s}$	Tanaka+'11
	USS1558-003	2.527	$H\alpha$	2.315	MOIRCS	NB2315	$K_{ m s}$	Hayashi+'12
General	GOODS-N	2.19	$H\alpha$	2.094	MOIRCS	NB2095	$K_{ m s}$	Tadaki+'11a
field	(62 arcmin ²)		[O II]	1.189	MOIRCS	NB1190	J	observed
	SXDF	2.19	$H\alpha$	2.094	MOIRCS	NB2095	K	Tadaki+ in prep.
	(110 arcmin^2)		$H\beta$	1.551	MOIRCS	NB1550	H	not yet
	(3)		[O II]	1.189	MOIRCS	NB1190	J	not yet

Collaborators: T.Kodama (PI), M.Hayashi, K.Tadaki, I.Tanaka, R.Shimakawa

MAHALO-Subaru project

MApping H-Alpha and Lines of Oxygen with Subaru

Wide-field + NB imaging approach

A very effective way to construct a big SF galaxy sample across environments.

(Kodama, Balogh, et al. 2004)

Big change at z~1.5?

$H\alpha$ emitters at z=0.81 (RXJ1716)

Koyama et al. (2010)

[OII] emitters at z=1.46 (XCS2215)

Hayashi et al. (2010)

Active SF site changes from cluster core (z=1.5) to outskirts (z=0.8)?

Galaxy clusters at z>1.5

```
Spec-z confirmed & X-ray detected clusters only
      (candidates are much more - apologize if I miss some recent discoveries...)
                          z=2.00 Gobat et al. (2011, 2013)
  CL J1449+0856
                           z=1.75 Stanford et al. (2012)
  IDCS J1426.5+3508
                          z=1.75 Henry et al. (2010
  XMMU J105324-572348
  CIG J0218.3-0510
                           z=1.62
                                    Papovich et al. (2010), anaka et al. (2010)
  XMMU J0044.D-2033
                           z=1.58
                                    Santos et al. (201
                                    Fassbender et al. (2011)
  XMM J1007+1237
                           z=1.56
  XMMU J0338.8+0021
                                    Nastasi et al. (2011
                           z=1.49°
```

XMMXCS J2215.9-1738 z=1.46 discovery by Stanford et al. (2006)

Large-scale structures at z~1.5

S-Cam [OII] emitter survey revealed ~20Mpc-scale filament at z~1.5

Tadaki et al. (2012)

Ha mapping of z~2 proto-clusters

"Massive starbursts" in proto-cluster

SF galaxies in the proto-cluster show redder colours and higher M* (>10¹¹M©) compared to general field galaxies.

```
    □ : red HAE
        (J-Kab>1.38, DRG)
    □ : green HAE
        (0.8<J-Kab<1.38)</li>
    □ : blue HAE
        (J-Kab<0.8)</li>
```

(Koyama et al. 2013a)

Rest-UV morphologies of proto-cluster galaxies

"Star-bursting" proto-clusters at z~2.5

Unveiled by the H\alpha search (most distant case from ground-based telescope)

We observed these highest-density regions at z=2.5 with IRCS+AO188 in May 2013. Hope I can show the results in the next GLAO workshop...

What's next (with GLAO)?

(1) GLAO+NB imaging: "Ultimate-MAHALO"

- "Ha geometry" survey across environments
- measure $H\alpha$ size (profile) for "all" galaxies in FoV
- statistical sample of spatially resolved $H\alpha$ map
- provide "best sample" for TMT

(2) GLAO+BB imaging

 $H\alpha$ map of z>1 $H\alpha$ emitters with SINFONI (Swinbank et al. 2012)

- needed for technical reason (continuum subtraction)
- but BB imaging can reveal stellar profile for "all" galaxies

What's next (with GLAO)?

Survey strategy (very rough idea)

Target: ~20 clusters at 0.4<z<2.5 and their surroundings

- we need to develop ~15 NB filters (throughout z/Y/J/H/K)
- ~30'x30' for z<1.5 clusters (4 pointings; 1.5hour for BB; 3hour for NB)

18 hours \times 10 clusters = 180 hours \sim 20 nights

~100-200 emitters in 30' \times 30' \rightarrow H α geometry of ~1500 galaxies

- ~15'x15' for z>1.5 clusters (1 pointing; 3 hour for BB, 5 hour for NB)

8 hours \times 10 clusters = 80 hours \sim 9 nights

~30-50 emitters in 15' \times 15' \rightarrow H α geometry of ~400 galaxies

- Our goal is to construct ~2000 galaxies from various z and environments.
- MOS spectroscopy follow-up needed to confirm cluster membership
- multi-IFU can reveal kinematics of individual galaxies

Answers to the questions

- Q1. Which instrument is essentially important for your science cases?
 - → Wide-field NIR imager is essential. Multi-IFU is also attractive, but KMOS will do a lot of things before start of GLAO operation...
- Q2. What is the optimal plate scale / FoV for your science cases?
 - → The default 0.1" pix scale (and 14'x14' FoV) is fine for imager. For multi-IFU instrument, default 1.8" x1.8" FoV (per IFU) may be too small in some extreme cases (massive starbursts in proto-cluster).
- Q3. Can you highlight synergies between this instrument and the TMT?
 - → The proposed wide-field NB imaging survey (in clusters/fields) can provide the "best sample" for TMT (e.g. target finer structure, other lines, etc).

Answer to the questions

- Q4. Does this instrument have competitive (or complementary) capabilities with planned Near-IR space missions such as JWST, Euclid and WISH?
 - → Probably yes -- at least in the sense that we can install as many NB filters as we want even after the GLAO mission started?
- Q5. A brief observation plan for your science cases which can be (a part of) Legacy Science Survey with Subaru GLAO
 - -Survey Area / Fields: ~20 clusters at 0.4<z<2.5 and their outskirts
 - Observing modes: BB + NB imaging
 - Number of nights: 30 nights?
 - Uniqueness: Sample provided by (seeing-limited) Subaru. Take full advantage of large FoV. Strong impacts only with imager?
- Q6. How could these observations be used to leverage TMT capabilities?
 - → Again we can provide the best, feasibly bright galaxy sample for TMT, and I am sure that we can maximize the efficiency of the science output of TMT.

Summary

✓ (seeing-limited) MAHALO-project made a great success

- Revealed large-scale structure out to z~2.5
- Red/massive starbursts in proto-cluster environments

✓ Our next step is "GLAO-assisted MAHALO"

- NB imaging is not only for "selecting" emitters
- AO+NB imaging enables "SF geometry" survey
- keen to test environmental effects on internal SF geometry!