Synergy with ALMA beyond 2020

Daisuke Iono
(NAOJ, Chile Observatory)

Major Merger Evolution

Saitoh et al. (2009)

Hopkins et al. (2006)
Matsui et al. (2012)

Role of mergers in galaxy evolution

1503, 70 micron selected galaxies in the $0.01<z<3.5$ universe using COSMOS Kartaltepe et al. (2010)

Subaru MOIRCS
Bundy et al. (2009)

Mergers produce bright galaxies

9397 galaxies in the $z<0.1$ universe using SDSS
Ellison et al. (2013)

Kartaltepe et al. (2010)

Local Merging Galaxies

- Stellar morphology, gas mass fraction, etc may be different between low and high-z.
- $\mathrm{z}=0$ merging U/LIRGs are the only sources that we can study in detail in order to understand interaction triggered SB and AGN activity.

ALMA Studies of Colliding Galaxies

1. Case Study - VV114
2. What is the end product of a major merger?

ALMA Observations of VV114

- $\mathrm{L}_{\text {FIR }}=4.1 \times 10^{11} \mathrm{~L}_{\text {sun }}$
- $D=77 \mathrm{Mpc}$
- projected nuclear separation $\sim 6 \mathrm{kpc}$
- Iono, Saito et al. (2013)
- Saito, Iono et al. in prep

VV114 seen in different wavelengths

Grimes+ 2006, Le Floc'h+ 2002, Alonso+ 2002, Tateuchi+ 2012

VV114E	VV114W
A compact starburst (mid-IR) and/or highly obscured AGN (X-ray)	Diffuse starburst (mid-IR)

Global SFR Pad $\sim 45 \mathrm{M}_{\text {sun }} /$ year

ALMA Observations

- CO(1-0), (3-2) - cold gas tracer
- HCN (4-3), HCO+(4-3) - dense gas tracer

Atacama Large Millimeter/submillimeter Array

药 $\mathrm{CO}(1-0), \mathrm{CO}(3-2)$

ALMA HCN and HCO maps

- $\mathrm{HCN}(4-3) \& \mathrm{HCO}^{+}(4-3)$
- Compact unresolved source (EO)
- Extended filamentary structure with massive dense gas clumps ($\sim 230 \mathrm{pc}, \sim 10^{6} \mathrm{M}_{\text {sun }}$)

Buried AGN?

- Unresolved with 200 pc beam
- Broad linewidth (FWZI ~ $290 \mathrm{~km} / \mathrm{s}$)
- E0 has HCN/HCO > 1
- Observational evidence that such high HCN/HCO suggests AGN (e.g. Kohno et al. 2001)

> Mass $<8.1 \times 10^{6} \mathrm{M}_{\text {sun }} \mathrm{AGN}$ triggered by the merger?

HCO+ Surface Brightness

ALMA Studies of Colliding Galaxies

1. Case Study - VV114
2. What is the end product of a major merger?

What is the end product of a major merger?

Junko Ueda (U. Tokyo) et at. in prep

Disk survival

ALMA

- Initial parameters, gas mass fraction can be the important parameter for disk survival. (Hopkins et al. 2006, 2013)
- AGN can also play a key role in the evolution of disks (Okamoto et al. 2008)

Merger Remnant Sample

- 37 galaxies out of Rotheberg \& Joseph (2004) catalog
- Rotheberg \& Joseph (2004) is a catalog of 51 merger remnants compiled from 4 catalogs of peculiar galaxies (e.g., Arp, VV,..), and then selected based on K-band

1. Optical morphology (tidal tails, loops)
2. Single nucleus + No nearby companion

Kinematics

High
FIR luminosity

Small disks

ALMA

Size of the CO disks

59 antennas at the site

ALMA Overview

- An international project
- 20 countries and regions (Japan, Taiwan, U.S., Canada, 15 EU nations, Chile)
- 4 regions
- East Asia (NAOJ)
- North America (AUI/NRAO)
- Europe (ESO)
- Chile
- Joint ALMA Observatory (JAO)

- Number of antennas
- 12m main array: $50 \times 12 \mathrm{~m}$
- Atacama Compact Array (ACA): $4 \times 12 \mathrm{~m}+12 \times 7 \mathrm{~m}$
- Angular resolution
- 0.01" (x10 of HST)
- Sensitivity
- 30-100 times better than existing radio telescopes

ACA (Japanese Contribution)

ALMA Status

Atacama Large Millimeter/submillimeter Array

ALMA operation

Operations Support Facility
Array Operations Site

ALMA Inauguration (March)

6 presentations at the OSF (2900 m site)

Vice Minister of MEXT Fukui

President Pinera

ALMA Chief Scientist Ryohei Kawabe

Subaru-ALMA Synergy

- Cycle 0 (2011-2012), Cycle 1 (2013)
- $\sim 30 \%$ of ALMA cycle 0/1 accepted proposals in East Asia are based on Subaru data
- Subaru - stellar distribution, mass, (kinematics)
- ALMA - gas distribution, mass, kinematics

Strengths and weaknesses of ALMA

Strengths

- High resolution
- High sensitivity and dynamic range
- Observable during daytime
- Covers the entire mm/ smm atmospheric window

Weaknesses

- Small FOV
- $18^{\prime \prime}$ at 850 micron
- Narrow Bandwidth
- 8 GHz per IF

ALMA pointing

- 880 pointings (Nyquist@100GHz) to cover 14×14 arcmin (GLAO FOV)

Future Developments

- Near (~5 year) future (before 2020)
- Band 1, 2, 5 (Baseline bands)
- VLBI capabilities
- >10 years ahead (> 2020)
- Band 11 (THz: high-J CO, [NII])?
- Multi-beam receiver ($\sim 10-100$ pixels)?
- Wide bandwidth (10-100 GHz?)?
- Longer baselines (expanded ALMA)?
- Workshop on future development (July 8-9)
"EA ALMA Development Workshop"

Questions

- Which instrument is important?
- Proposed wide-field instruments important for ALMA synergy (particularly for ALMA followup)
- Spectroscopic capabilities will allow direct comparison with ALMA cold gas observations. (But targeted AO may be sufficient for merger studies: TMT?)
- Synergy?
- Complementary: ALMA will possibly seek wide field capabilities for 2020 and beyond

