Clumpy galaxies and compact star-forming galaxies

giant clumps, compact SFGs ~ Ikpc

Ken-ichi Tadaki (NAOJ, JSPS research fellow)

Tadayuki Kodama (NAOJ), Ichi Tanaka (NAOJ), Masao Hayashi (ICRR), Yusei Koyama (NAOJ), Rhythm Shimakawa (GUAS)

Morphology at peak epoch

z=0

Peak epoch

Formation of massive quiescent galaxies

Formation of massive quiescent galaxies

Capperallari+11

Formation of massive quiescent galaxies

MOIRCS NB survey

Filter	Instrument	$m_{5\sigma,AB}$
u	CFHT/MegaCam	27.68
B	Subaru/Suprime-Cam	28.38
V	Subaru/Suprime-Cam	28.01
R_c	Subaru/Suprime-Cam	27.78
i'	Subaru/Suprime-Cam	27.69
z'	Subaru/Suprime-Cam	26.67
Y	VLT/HAWK-I	26.69
K_s	VLT/HAWK-I	25.92
J	UKIRT/WFCAM	25.63
H	UKIRT/WFCAM	24.76
K	UKIRT/WFCAM	25.39
$3.6 \mu \mathrm{m}$	Spitzer/IRAC	24.72
$4.5 \mu\mathrm{m}$	$Spitzer/{ m IRAC}$	24.61

The survey area (~180arcmin²) corresponds to 1 FoV of ULTIMATE-SUBARU

Sample selection

A NB survey provides us a clean sample of star-forming galaxies even at z>2.

105 H α emitters have been identified by the NB209/NB2315 surveys t_{int} =2-3h, 8 FoVs with MOIRCS -> t_{int} =40min, 1 FoV with ULTIMATE-SUBARU

MOIRCS spectroscopy

For 12 out of 13 NB209 emitters, a line emission has been detected (>90%). $t_{int}\sim4h$, 1mask with MOIRCS -> $t_{int}\sim1h$, 0.1mask with ULTIMATE-SUBARU

To avoid OH lines, R>3000 is required. R~500 mode is not needed.

dentification of clumps

~40% of star-forming galaxies are clumpy

Differences between clumpy and non-clumpy are not seen in M_{star}-SFR.

Clumpy galaxies

less massive clumpy galaxies (M_{star}<10¹⁰M_•)

massive clumpy galaxies (M_{star}=10¹⁰⁻¹¹M_●)

color of clumps (I₈₁₄-H₁₆₀)

Massive clumpy galaxies have a proto-bulge component.

Dusty star-formation in red clump

A red clump is dust obscured star forming proto-bulge?

This is not the direct evidence

A0 Hα imaging

The relation between radial distance and clump properties provide us important information for clump migration.

Migration of giant clumps

We do not know whether clumps migrate to a bulge or are disrupted by outflows.

But,

the relation between radial distance and clump properties provide us important information for clump migration.

Spectroscopy

GLAO makes 0.4"slit spectroscopy possible, spectra depends on the position of slit.

 \rightarrow IFU is better but ...

IFU instrument is not critical?

Spectroscopy

red clump is AGN or dusty star-forming proto-bulge or old bulge?

Newman+12,

Genzel+II

Compact Ha emitters

Direct progenitors of compact QGs?

Compact Ha emitters

What is the difference between compact and extended SFG?

TMT can spatially resolve compact SFGs.

Proposal: Ultimate NB&spec survey

J-band: z~1 HAE, z>7 LAE, z>2 QG

H-band: z~1.5 HAE

K-band: z~2 HAE

Proposal: Ultimate NB&spec survey

Field: SXDF or COSMOS

- 1. NB survey in 0.5 degree² (1hour) × (10 NB filters/FoV) × (10 FoVs) = 100 hours
- 2. Slit scan spectroscopy (2.5 hours×5 scan, R>3000) × (2-band) × (8 masks)= 200 hours
- A NB sample of ~10,000 SFGs is constructed.

 A spectroscopic sample of ~1,000 SFGs is constructed.

To avoid OH lines, R>3000 is required. Wider field instrument is better even if FoV splits.

My answers to questions from Iwata-san

- Q1. Which instrument is essentially important?
- A1. Wide-Field NIR Imager and MOS spectrograph
- Q2. What is the optimal plate scale
- A2. A scale to identify clumps and compact SFGs (~1kpc) are required.
- 0.1"/pix seems to be good.
- Q3. Can you highlight synergies between this instrument and the TMT
- A3. Compact SFGs are good targets for IFU spectroscopy by TMT.
- Q4. Does this have competitive capabilities with space mission?
- A4. The combination of NB imaging with spectroscopy is unique.