Simulating Observations of z~2 galaxies with GLAO

Yosuke Minowa, Ikuru Iwata (Subaru telescope)

Motivation

- What is the most unique capability of the GLAO instrument?
- GLAO will start observation from somewhere around 2020
 - → It is important to think about the uniqueness of the Subaru GLAO comparing to TMT and any other space based telescope.
- Evaluate the competitiveness of GLAO imager, MOS spec., and IFU spec.
- Case study for z~2 galaxies by simulating the actual observations.

Science requirement: Sensitivity

SINFONI spectroscopic survey of z~2 star forming galaxies (Forster Schreiber+09)

SINS - zC-SINF AO

SINS seeing R>4.5 kpc

Wisnioski AO

Swinbank AO

Law - Wright AO

Lemoine-Busserolle - Epinal seeing R>4.5 kpc

Epinat AO

• Can we detect H α emission line corresponds to SFR \sim 1-10 M_{sun}/yr to study < 10 ¹⁰M_{sun} galaxies?

^{sun'} (Newman+13)

Science requirement: Spatial Resolution

- Can we spatially resolve ~1kpc scale star-forming clumps at z~2?
- Can we reconstruct morphological parameters of z~2 galaxies?

Simulating GLAO observation of z~2 galaxies

- z~2 galaxy sample selection
 - HST/WFC3 H-band (F160W) image of z~2 galaxies
 - Highest resolution image currently available
 - Data from CANDELS (Koekemoer et al. 2011) GOODS-S survey whose survey area (~120arcmin²) is comparable to the GLAO instrument
 - Selected K_{AB}<23.9 BzK galaxies from MUSYC (Cardamone et al. 2010) catalog
 - z=2.1-2.6 star-forming BzK with spec-z: 40
 - --- K-band imaging/spectroscopy
 - z=1.3-1.7 passive-BzK with phot-z: 6
 - --- H,K-band imaging/spectroscopy

GLAO galaxy simulation recipe

- 1. Extracted galaxy morphological parameters
 - --- Sersic profile fit: Effective radius Re, Sersic index N, Axis ratio, and Position angle
 - ※ Simple convolution of the WFC3 image may not reproduce well the GLAO image since WFC3 spatial resolution (FWHM~0".18) is worse than the best GLAO resolution (FWHM~0".15).
- 2. Construct the model galaxy image from the morphological parameters without any PSF convolution.
- 3. Convolve the model galaxy image with the GLAO PSF
- 4. Add noise corresponds to 5 hrs integration
 We used 5hrs integration time and 5sigma S/N for all simulation,
 so as to evaluate the limitation in just 1 night observation.

Star-forming BzK at z=2.1-2.6 (Model)

Modeling sBzK galaxies based on GOODS-S WFC3 image (CANDELS)

Sersic profile $\Sigma(r) = \Sigma_0 \exp\left\{-b_n \left[(r/r_e)^{1/n}\right]\right\}$

Comparison with z~2 sBzK sample at GOODS-N (Yuma et al. 2011) Single-comp sBzK Those with $z_{E850LP} < 24.5$ Our sample Effective radius log(Re[kpc]) 0.5-0.511 12

Stellar mass log(M_{*}/M_{sun})

GLAO PSF

(from Oya-san's talk)

We used the center PSF at the moderate seeing condition to simulate the observation of z^2 galaxies.

★ : LGS (10mag)、 ■TTFGS (18mag)

Seeing condition:

Bad (75%): 0".56@K

Moderate (50%): 0.44@K

Good (25%): 0".35@K

PSF for each target field

- Subaru Deep Field (Dec =+27.5deg) → Apr, z=15deg
- COSMOS (Dec=+2.2deg) → Feb, z=15deg
- SXDF/UDS (Dec=-5.2deg) → Oct, z=30deg

Summary of the PSF used in this simulation

	COSMOS	SDF	SXDF
Zenith angle	15	15	30
Month	Feb.	Apr	Oct
FWHM(Seeing)@K	0".48	0".46	0".48
FWHM(GLAO)@K	0".23	0".18	0".22

Simulated Observations

- Wide Field NIR imaging
 - Broad-band (BB) imaging
 - Narrow-band (NB) imaging
- Multi-Object Slit (MOS) spectroscopy
 - Emission line
 - Continuum
- Multi-IFU spectroscopy
 - Emission line

Imager

Baseline Specification

Wavelength	0.8μm – 2.5μm
Plate Scale	0.10"
FoV	13.6' x 13.6'
Detectors	4 Teledyne H4RGs (4 x 4096 x 4096 pixels)
Filters	Broad-band and Narrow-band filters

- Wider than any NIR imager on 8m class telescopes
- The instrument throughput is assumed to be same as VLT/HAWK-I (~60%@JH, ~50%@K)
- Seeing performance is just same as VLT/HAWK-I

Broad-band imaging: Sensitivity

Morphological study with GLAO as of 2011, 2012

BB imaging: Possibility for reconstructing the morphological parameters with GLAO imager

BB imaging: summary

- Simulated z~2 galaxy imaging in H, K-band with new GLAO PSF which takes into account the PSF difference according to the zenith angle and seasonal seeing change.
- The point source sensitivity gain against the normal seeing instruments (such as VLT/Hawk-I) is different for each field. (1.0 mag for SDF, 0.7 mag for COSMOS)
- The sensitivity gain for galaxies are almost same for all fields.
 - 0.3-0.6 mag for compact galaxies (<3kpc).
 - Hereafter, we used COSMOS PSF to simulate the observations of z~2 galaxies.
- The limiting mag. is more than 3 magnitude brighter than TMT or JWST (~30mag in K, Wright et al. 2010).
 - Broad band imaging cannot be competitive
 - Wide-field capability might be useful for finding rare objects like passively evolving galaxies.
- Morphological parameters (Re, N) can be reconstructed from the GLAO image for galaxies whose mass is larger than $10^{10} \, \rm M_{sun}$
- For lower mass galaxies 10⁹ M_{sun,} we can reconstruct size (Re), but cannot reconstruct Sersic index.

Narrow-band imaging: Ha map

- Simulated Bry-image of H α emitters at z=2.3 with 5hrs integration
 - made from HST/WFC3 images of star-forming galaxies in SXDF (Tadaki+13)

NB imaging: Sensitivity for detecting $H\alpha$ from z^2 galaxies

NB imaging: Summary

- Star-forming clumps in galaxies can be clearly resolved with GLAO NB imaging.
- GLAO can reach about 0.3-0.6 mag deeper than VLT/HAWK-I for compact galaxies (<3kpc)
- Bry-imaging can reach H α emitters with SFR < 10Msun/yr for compact galaxies with re < 3kpc.
 - Wide field NB-imaging can be a good sample provider for the IFU study with TMT
- JWST/NIRCAM (F212N) can reach about 1.8 mag deeper than GLAO NB image for galaxies with re~2kpc and more for point sources (from Iwata-san's calculation).
 - More than 100hrs integration required to achieve similar depth as JWST/NIRCAM.
 - Legacy type survey could achieve this integration.

Multi-Object Slit Spectrograph

Baseline Specification

Wavelength	0.8μm – 2.5μm
Plate Scale	0.10"
FoV	13.6' x 13.6'
Detectors	4 Teledyne H4RGs (4 x 4096 x 4096 pixels)
Filters	Broad-band and Narrow-band filters
MOS	Multi Slit Mask
λ Dispersion	~3000

- Keck/MOSFIRE type instrument with 13'x13' FOV
 - Wider FOV than any existing MOS spectrograph on 8m class telescopes
- Assume similar throughput as Keck/MOSFIRE
 - the highest throughput ever achieved (30-40%@JHK)
 - Seeing performance is just same as Keck/MOSFIRE
- Slit width is assumed to be 0".4 which is 2 times wider than GLAO PSF.

MOS Spec.: emission line sensitivity

 Emission line 5σ sensitivity for point source and extended source (Re~1kpc or ~ 0".12 and N=1) with 5hrs integration.

MOS Spec.: Emission line sensitivity

• S/N of H α emission line flux which corresponds to SFR $^{\sim}$ 1 M $_{sun}$ /yr (assume E(B-V)=0.2) with 5hrs integration

MOS spec.: Continuum Sensitivity

 Continuum 5 σ sensitivity for point and extended source with 5hrs integration

MOS. Spec: Summary

- Emission line: GLAO can increase the S/N of emission lines by 2 times higher than MOSFIRE.
- SFR~1M_{sun}/yr can be detected with Ha emission line located between sky emission line.
- Provides better sensitivity than NB-imaging, which enables redshift confirmation of the Ha-emitter discovered by NB imaging.
- Although TMT can achieve 3 times better S/N than GLAO (based on Law et al. 2006), the MOS capability is still required to enable rapid follow-up of the target discovered by GLAO NB imaging.
- Continuum sensitivity is worse than K^23 mag. Follow-up spectroscopy of z^2 passive galaxies discovered by BB imaging should be done by TMT.

Multi Object IFU

Baseline Specification

Wavelength	0.8µm – 2.5µm
Spatial Sampling	0.125"
FoV per IFU	1.75" x 1.75"
Number of IFUs	24 (TBD)
Detectors	3-4 H2RGs? (TBD)
Patrol Area	~ 13'
λ Dispersion	~3000
Imaging Capability	No

- VLT/KMOS type multi-IFU
- Throughput is assumed to be 80% of MOSFIRE due to the optical components for IFUs.

Multi-IFU: mock image

- Simulated IFU S/N map of H α emitters at z 2 .3
 - same objects as we used for NB imaging

Multi-IFU: Sensitivity

Multi-IFU: Summary

- Star-forming cramps can be resolve with IFU.
- GLAO IFU spectrograph can be detected H α emission line from z 2 2 galaxies corresponds to SFR 2 1Msun/yr, if size of galaxies is less than 2 kpc.
- TMT/IRIS can detect SFR~1Msun/yr from similar size galaxies with S/N>40 (Wright et al. 2010)
- To be competitive with TMT/IRIS, GLAO IFU should have multiplicity of targets with more than 64 pick-off arm.
 - Need to investigate if this number is technically possible.

Conclusion

Competitive

less competitive

Competitive??? (in Japanese 微妙)

- Broad band imaging is not very competitive against the TMT/JWST, although >0.5mag gain can be obtained from the normal seeing instrument.
- NB imaging can reach the galaxies with SFR <10 Msun/yr, which can be good targets to follow-up with TMT IFU.
- Emission line sensitivity is only 3 times worse than TMT/IRIS, which could be competitive by combining with the GLAO NB imaging survey.
- Continuum sensitivity is less competitive as we can detect galaxies brighter than
 23 mag in K-band.
- Multiple-IFU could be competitive against TMT/IRIS if we can have more than 60 pick-off arms, but it is better to invest TMT/IRMOS.

Any comment or request for the simulations of GLAO observations are welcome.

おまけ

Star-forming BzKs at z=2.1-2.6 (GLAO image)

Assuming 5 hours integration in K-band under moderate seeing condition (0".5)

Passive BzKs at z=1.3-1.7 (Model)

Modeling pBzK galaxies from GOODS-S WFC3 image (CANDELS)

Comparison with the other z^2 passive galaxies at HUDF (Cassata et al. 2010)

Passive BzKs at z=1.3-1.7 (GLAO image)

Assuming 5 hours integration in H band under moderate seeing condition (0".5)

Impact of the LGS satellite closure

BB imaging: Morphological study

