
GLAO Instrument from MOIRCS Perspective

Ichi Tanaka

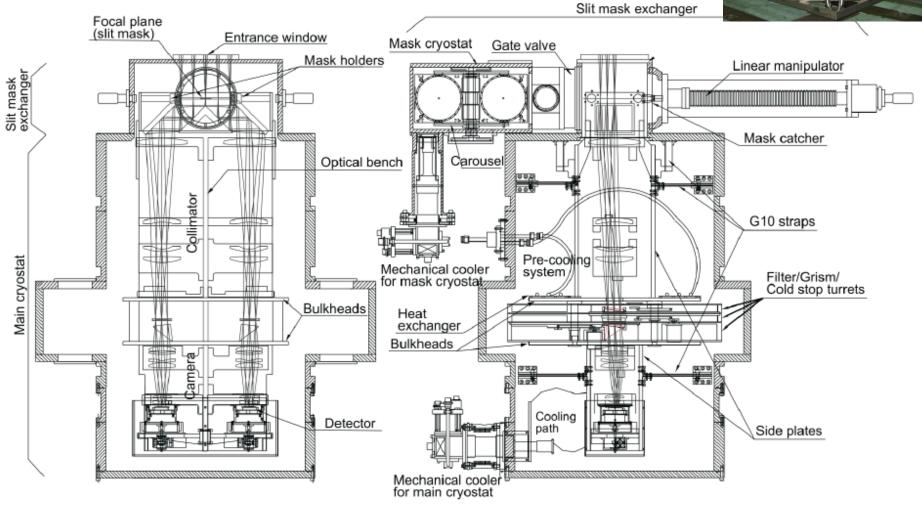
Subaru Telescope

Preface

Question: "How you want to use 8-m Telescope in 2020s when TMT/GMT/JWST/WISH etc are there?"

"Attractiveness" of the instrument itself is the key for success.

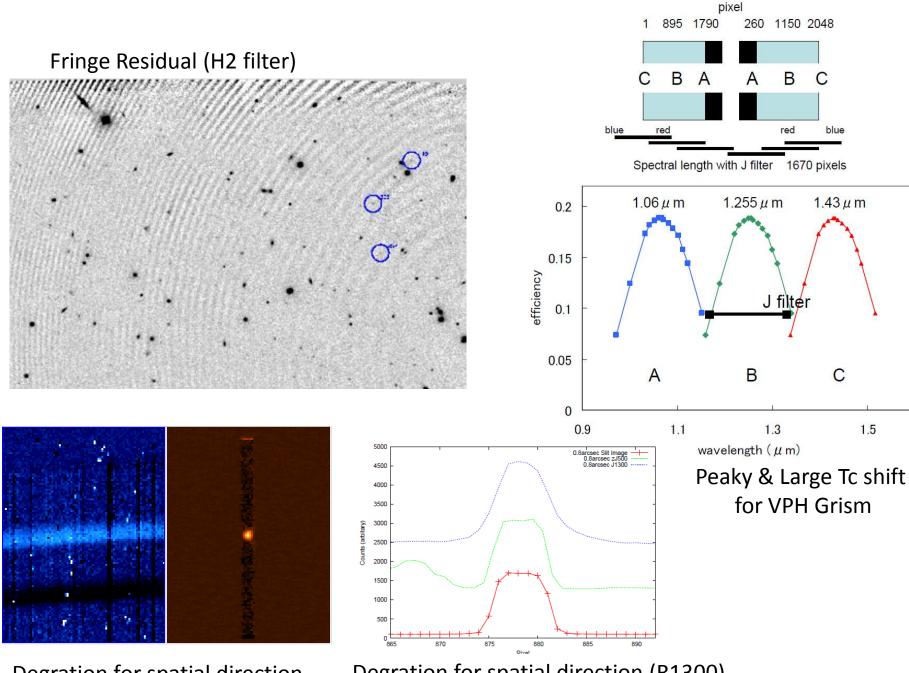
Attractive=Challenging (no counterpart). If overcome, great idea will follow (I believe).


「人に使ってみたくさせる様な、魅力的な装置」をいかに (経済的に)作るか。進化の可能性を維持する事ができるか。

MOIRCS

- FL ... Sep 2004 (imag) & 2005 (MOS).
- Open-use started from S06A.
- The First NIR MOS open-use instrument among large telescopes.
- The First Wide-Area NIR instrument for large telescopes until arrival of HAWK-I
- Imaging: 4'x7' FOV by 2 H2. YJHK & many NBs
- MOS/long slit. R500, R1300, VPH(YJHK).

MOIRCS

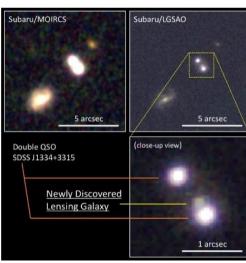

SIDE VIEW FRONT VIEW

MOIRCS: Pros

- Cs instrument → Better background performance in K than Ns (cf. HAWK-I).
- 3 Filter/Grism/Stop Turrets (total 36 ports) →
 Many Filter Ports available for user filters &
 grisms.
- 0.117"/pix → Good sampling for good condition.
 ~3 pix condition is not so rare. → Good choice.
- 2 independent channel ... Die Hard to trouble (half-channel operation possible).
- Complicated operation (e.g., ch1->sp, ch2->im) is also possible.

MOIRCS: Cons

- Flexure ... Large line residual after sky subtraction (Sp.). Shift of the spectra. Fringe on imaging data.
- Poor Align of Cold Stop. No way to fine adjust.
- Large overheads: Too slow detector readout.
 Slow MOS alignment time.
- R500...too many OH lines. R1300...very low sensitivity for YJ. Image degration by grism itself. VPH...Peak efficiency wavelength shift: very difficult to use for MOS.
- Frequent focus change (telescope). AG does not help for check due to the focus mismatch.



Degration for spatial direction

Degration for spatial direction (R1300)

MOIRCS: Scientifically...

- Good Imaging Performance. But studies for morphology are limited. <u>Mostly just photometric</u> use.
- Deep obs ... condition averaged out -> <u>degrade</u>.
- Deep Imaging Data...<u>follow-up impossible</u>?
 (But All visible objects will be spectroscopic targets for TMT !!)
- Limit of photo-z and instrument sensitivity: >50%
 success rate for spec-z is a hard task (partly due to fillers).

- Spec data is quite sensitive to seeing under 0.8"-width slits. Slit loss is a serious issue.
 - Narrower slit is preferred to avoid OH lines.
 - But NOT all galaxies are compact enough to confidently use 0.2"-0.4" slits. Extended galaxies might also be morphologically complex.
 - → Extragalactic People may choose wider slits after all (more photon is preferred)? e.g. 0.6" slit for 0.06"/pix => 10pix profile!
 - Cf.) oversampling problem on FOCAS (Dr.Ohyama's review 2005).

Is simple MOS still attractive for 2020 era? But MOSFIRE type/microshutter technology may worth trying.

FOCAS進化論(FOCAS Instrument Review) by Dr. Y. Ohyama (2005)

- FOCAS: Subaru optical MOS Spectrograph.
- Dr. Ohyama --- 1st FOCAS SA.
- His Review --- Suggestive to NGAO Instrument.

想定外?(1)

撮像エリアと分光エリアが同一サイズ?

DEMIOS: 2Kx4Kx4 for imag. 2Kx4Kx8
 VIMOS: 2Kx2Kx4 for imag. 2Kx4Kx4

- GMOS: 2Kx4.5Kx3 の中央部 for ima

全域 for spec.

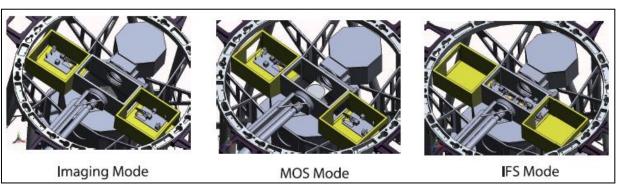
– FOCAS: 2Kx4Kx2 for imag, 2Kx4Kx2

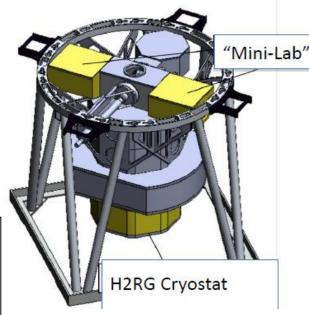
- ✓ 分光領域を優先すると、6' fai の全域に天体でない事態が多数発生!
 - MOS multiplexing gain 向上の足かせ。

想定外?(2)

分散、分解能、CCDサイズ、Pixel サイズの悩ましい関係

- 0.2" slit がデフォルト?
 - 0.1" per pix のオプティマム・サンプリング
 - 0.2"ぐらいなら、たしかに結構な分解能になる。
- 実際は、0.8"-1.0" slit が多用された。
 - 微光天体の slit loss は避けたい。
 - --
 - サイエンス上、高めの分散を要求するものは多かった。
 - SDF などの MOS も、高めの分散の採用例が多い。
 - 75 グリズムで、スペクトルを縦にスタックする構想は、実現し
- その結果。
 - 最大グリズム (VPH) でさえ、分散は不十分。
 - CCD を大量にビニング。
 - または、分散を優先して、フォトンを損。
 - 無理に高めのグリズムを使うと、波長帯域が減少。
 - MOS 時には、スリット位置に強い制限。
 - MOS multiplexing gain の足かせ。

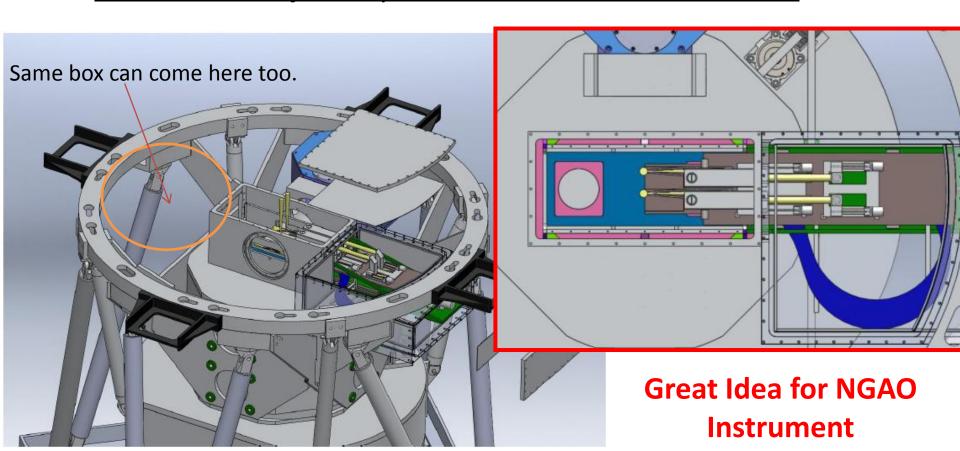

想定外?(3)

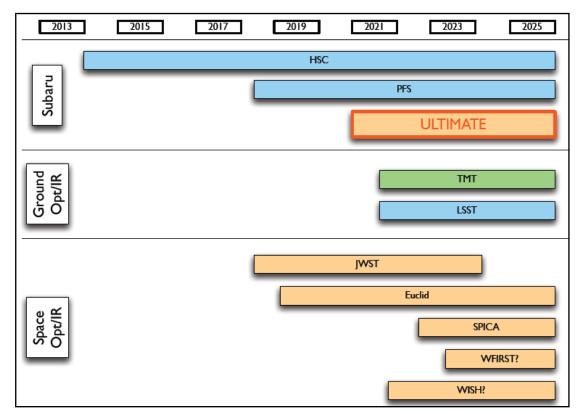

- FOCAS の flexure の設計要求は、<1 pix drift per 1h.
 - 十分な精度だったか?
 - 実際、精度は達成されていた。
 - ✓フリンジ除去、OH 夜光差し引きに問題!
 - 超微光天体検出能力をリミット。
- 世界の趨勢は、<1 pix drift per night.
 - Flexure compensation system (FCS) の活躍。
 - · GMOS/ESI: open loop; DEIMOS: close loop
 - · [VIMOS: extremely stiff structure]
 - Sky subtraction is KEY! Remove fringe!
 - 例えば、DEIMOS の PDR では、sky 差し引きの重要性がくどいほど 強調されている。
 - 他分光器でも、程度の差はあれいずれも OH 引きに注意している。
 - 我々は、その重要性をどれだけ認識していたか?

http://optik2.mtk.nao.ac.jp/~cyoshida/SACsympo/

vMOIRCS: MOIRCS upgrade (2012~)

- H2→H2RG+ASIC: much better overhead & less cosmetics, good noise level expected.
- **IFUs**: 4 IFU arms will be added. Other options (MLA mode etc) are also on work.
- Instrument Improvement: Efforts for flexure suppression etc.



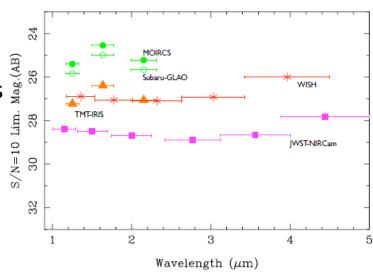

MOIRCS could be a 1st light GLAO instrument depending on the condition.

vMOIRCS "Wing Box"

- Two wing boxes. 2 IFUs for each.
- If 4 IFUs are combined, it works as a large single IFU.
- Flexibility for Other Applications (test bench).
- Modification: just replacement of Focal Plane Box.

NGAO Instrument and 2020

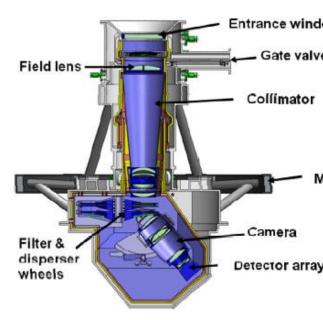
From Iwata report (2013)


- JWST, EUCLID (and I wish WISH too) will already be there.
- TMT comes soon. GMT may already be there (FL late 2019). E-ELT will be soon(early 2020s).
- TAO will be soon (SWIMS could also be a FL instr for GLAO).

JWST (Imaging)

- NIRcam can go extreme depth.
- Wide-area shllaow(still deep) scan should also be an easy task.
- Pressure for COSMOS-Like Legacy Data → deg²-scale survey likely to be executed. But 10² scale would be too time-consuming for JWST.
- Wide FOV of NGAO Inst. can make the data with 10-100 sq.deg with reasonable time. We may keep some niche, until WISH comes.
- Any NB deep & wide-area survey would keep its own niche until WFIRST comes (next).
- K-band wide and deep would be attractive for EUCLID Deep Field (and WFIRST).

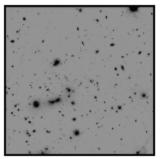
0.5" Extended Source Imaging 1e4 sec

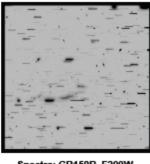


- 1st –ranked space mission by Decadal Survey 2010.
- Significant revision in 2013: 1.3m → 2.4m. Two Mirrors and optics system are already in NASA (given from NRO)!
- 18 H4RG. FOV=0.281 deg²(0.11"/pix). 0.76-2.0um (no K).
- Slitless Grism (R~700)+ 3.0"x3.1" IFU(R~100).
- Imaging (YJH~<26.7) and Spectroscopy (7s to 5e⁻¹⁷erg) for ~2000deg²!
- If started next year, Launch will be ~2022.
- For GLAO Inst...only K-band (NB,BB) is the niche. Early start is advantage.

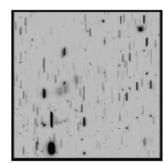
GMT NIRMOS: Potential Threat?

- GMT ... FL goal is **end of 2019**. Construction started, 2 mirrors already done (3rd in Aug?).
- NIRMOS ... 1st generation propsed instrument.
 GLAO-assisted 6.5'x6.5' NIR imager/MOS (CfA).
- 3x2 H4RG.
- MOS mask or MOS robot.
- CoDR review approved. Actively seeking funding.
- Filter space is currently quite limited.
- NGAO Instr....NB/IB only?





JWST: NIRISS


- Space ... Power of slitless spectroscopy.
- JWST NIRISS: R~150 slitless spec. across ~2'x2' FOV. Instrument is already in GSFC for test.
- Extreme sensitivity: best for faint z>7 LAEs.
- Narrow FOV? Survey volume of slitless spectroscopy is large (6<z<17). They will do Legacy-class survey anyway (deg²)?.

Subaru NGAO inst. may still have a niche in targeted wide-FOV NB business. For K-band region we have.

Spectra: GR150R, F200V

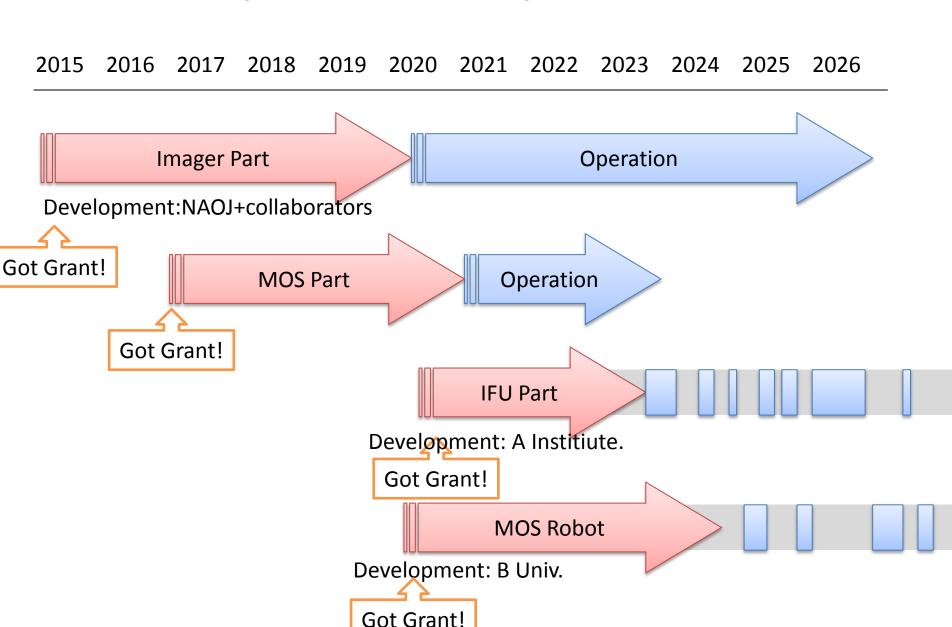
Spectra: GR150C, F200W

What our NGAO Instrument would be...

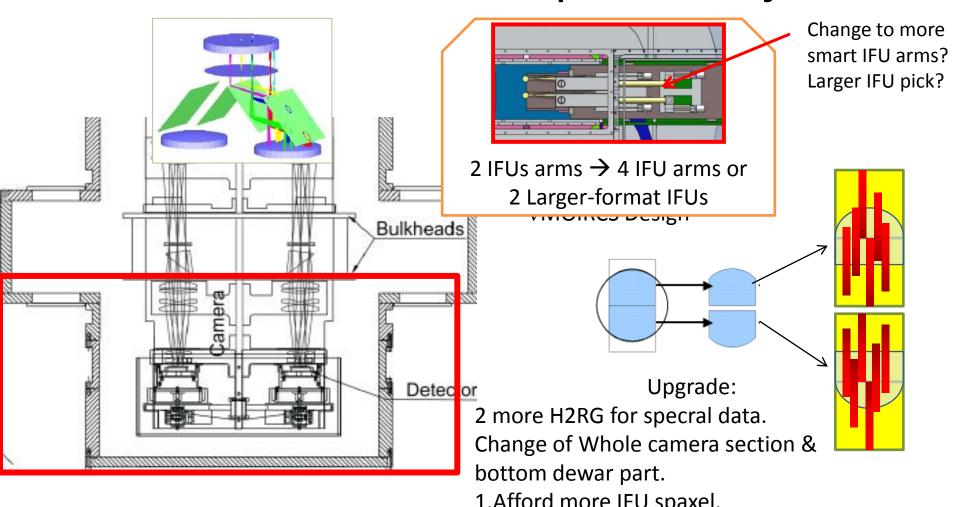
We want everything (Imaging, MOS, IFUs)!

But budget is limited. Weight limitation is also tight.

nuMOIRCS Approach might be a solution...


- 1. Making Imager First.
 - High Throughput. Simple Design.
 - Wide Fov, optimized to K band.
 - The Design for future addition of spec. function (=MOS/IFU etc) must already taken into account.

2. Making Unitized Additional Components


- MOS Robot Unit (MOSFIRE-type)?
- IFU(s)
- Near-Focal Plane NB Filters w/stacker?
- Is High Throughput "Giant" NIR-FP possible?
- Easy Convertibility --- they should be detachable with small downtime (~1 mo).

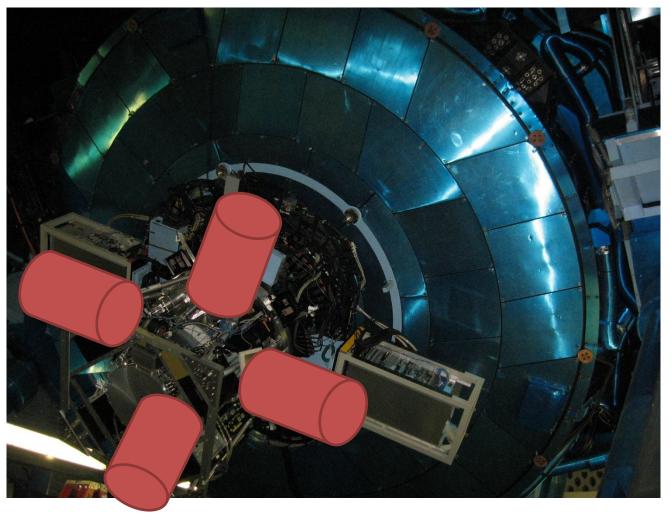
Unitization has advantage on risk/cost/manpower management.

Example of development case...

Option 0': "Cheapest" IFU option? A Further MOIRCS Update Project

Project: "vMOIRCS" \rightarrow " F_{v} MOIRCS?"

Summary


- NGAO Instrument ... Starting from Imager may be a realistic option.
- Unitized Design for further update (vMOIRCS-like approach) could be the solution for collaboration and difficult budget situation.
- FvMOIRCS? Good timing for it? As SWIMS comes to Subaru as a guest instrument.

(For me) manpower appears potentially the most serious issue for the project. How the project is going for realization??

Omake Idea...

(Based on a word from Y.Tanaka)

If 2-m limit causes more number of lenses, degraded pupil, etc... Let's seriously think about using whole bottom of telescope.

Ligntweight design of the dewar is also the key! Honeycomb-like wall?