Introduction to near-infrared spectroscopy with MOIRCS

Masao Hayashi (NAOJ)

originally created by Ken-ichi Tadaki (NAOJ) for 2013 Subaru winter school
updated by Masao Hayashi (NAOJ) for 2014 Subaru autumn school
Near-infrared in astronomy

- absorption by terrestrial atmosphere \((\text{H}_2\text{O} \text{ and } \text{CO}_2)\)
- wavelength range of 1-5 \(\mu\text{m}\)
- observable windows are limited \((J, \text{H}, \text{K}, \text{L}', \text{M}')\)
Features of NIR observations (1)

- **Detector**
 - Optical ($\lambda < \sim 1\mu m$) - silicon CCD (Charge Coupled Device)
 - NIR ($\lambda > \sim 1\mu m$) - semiconductor crystals

 MOIRCS: HgCdTe arrays named HAWAII-2 (sensitivity: 0.9-2.5\mu m)

- **Multi-Object InfraRed Camera and Spectrograph**
 - Inhomogeneous sensitivity
 - Non-sensible pixels (bad/hot pixels)
 - Notable differences among arrays

- MOIRCS has two detectors, providing a FoV of 4’ x 7’
- Imaging mode and spectroscopy mode

Suzuki et al. 2008
Features of NIR observations (2)

- High sky background \rightarrow short exposure
 - Strong emission by night airglow line (OH and O$_3$)
 - Variation in short time scale (several minutes \sim upwards of ten minutes)

<table>
<thead>
<tr>
<th>Sky is bright in near-infrared</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

- Ground-Based Telescope
- Atmospheric Emission
- OH airglow

- $\lambda < 2.2\mu$m:
 - OH lines dominate (green line)
- $\lambda > 2.2\mu$m:
 - Thermal radiation from telescope dominate (pink line)

- Zodiacal Emission
- Zodiacal Scattered Light

- Sky emission should be subtracted

Reference: lecture note by Iwamuro-san (http://www.kusastro.kyoto-u.ac.jp/iwamuro/LECTURE/OBS/)
Features of NIR observations (2)

- High sky background → short exposure
 ✓ Strong emission by night airglow line (OH and O$_3$)
 ✓ Variation in short time scale (several minutes ~ upwards of ten minutes)

![Graph showing intensity vs wavelength](http://ww)
MOIRCS Grisms

<table>
<thead>
<tr>
<th>Grism name</th>
<th>Operating range [um]</th>
<th>Resolution (0.5" slit)</th>
<th>Dispersion [Å/pixel]</th>
<th>Sensitivity (Vega magnitude) [mag/arcsec²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>zJ500</td>
<td>0.9-1.78 (*3)</td>
<td>700 @ J</td>
<td>5.57</td>
<td>J=19.2</td>
</tr>
<tr>
<td>HK500</td>
<td>1.3-2.5 (*4)</td>
<td>640 @ H</td>
<td>7.72</td>
<td>H=17.8 K=17.6</td>
</tr>
<tr>
<td>R1300 (*1)</td>
<td>1-2.5 (*5)</td>
<td>1300 @ ch1 ~1100 @ ch2 (*2)</td>
<td>1.91 @ J 2.61 @ H 3.88 @ K</td>
<td>J=17.8 H=16.7 K=17.1</td>
</tr>
</tbody>
</table>

spectral resolving power: \(R = \frac{\lambda}{\Delta\lambda} \)

in the case of the HK500 grism
\(R=820 \) and \(\lambda=22000\text{Å} \) -> spectral resolution \(\Delta\lambda=22000\text{Å}/820\sim27\text{Å} \)

- use the appropriate grism for your science case
- resolution depends on the slit width
Grisms for MOIRCS

Which grim should be used?

- Required resolution ($\Delta \lambda$) for your science
- Wavelength coverage
 ✓ spec-z is available or not
- Grism efficiency
- Brightness of targets

Figures from MOIRCS web page
signal to noise ratio (S/N)

$$S/N = \frac{\text{object} \times t}{\sqrt{(\text{object} + \text{sky}) \times t + \text{readout noise}}}$$

If sky $\times t >>$ readout noise, $S/N \propto \sqrt{t}$ (background limited).

- Integration time should be longer than the background limit.
Multi-object spectroscopy mode

Alignment Star
- **Spectroscopic Target**
- **Mask Design**
 - `.mdp`: the file where information of mask design is described

Spectra
- **Hole for Alignment**
- **Slit for Spectroscopy**

Tokoku 2006, PhD thesis
Multi-object spectroscopy mode

MOIRCS raw image (4′×4′)→

many stripes!
-> Target spectra are hidden behind OH lines
Two-point dithering on the slit

frame at A position

frame at B position

A-B frame

OH lines

slit

spectra of star

spectra in frame A

spectra in frame B
From raw image to reduced image

extract the **object** information from **raw data including noises**

raw data = \(\text{gain}(x,y) \times (\text{object} + \text{sky} + \text{cosmicray} + \text{bad pixel}) \)

①. flat fielding (=gain map)

\[
\text{rawdata} / \text{gain}(x,y) = \text{object} + \text{sky} + \text{cosmicray} + \text{bad pixel}
\]

②. interpolation of cosmicray and bad pixel

① - cosmicray - bad pixel = **object** + sky

③. sky subtraction

② - **sky** = **object**
Procedure of data reduction

1. Raw data
2. Flat fielding
3. Interpolation of bad pixels
4. Removal of cosmic rays
5. A-B sky subtraction
6. Distortion correction
7. Extraction of individual 2-D spectra
8. Wavelength calibration
9. Removal of residual sky emission
10. Combining all of the spectra
11. Reduction of spectrum of a standard star
12. Flux calibration and telluric correction
1. flat fielding

rawdata / gain(x,y) = object + sky + cosmicray + bad pixel

correct the inequity of sensitivity between detector pixels
2. interpolation of cosmic rays/bad pixel

interpolate the pixel value along spatial direction

① - cosmicray - bad pixel = object + skynoise
3. A-B sky subtraction

A position - B position = after sky subtraction

signal at A position

signal at B position
Procedure of data reduction

1. Raw data
2. Flat fielding
3. Interpolation of bad pixels
4. Removal of cosmic rays
5. A-B sky subtraction
6. Distortion correction
7. Extraction of individual 2-D spectra
8. Wavelength calibration
9. Removal of residual sky emission
10. Combining all of the spectra
11. Reduction of spectrum of a standard star
12. Flux calibration and telluric correction
Wavelength calibration using OH airglow lines

2D spectra and 1D spectra

2D spectra

wavelength direction

spatial direction

1D spectra
Procedure of data reduction

1. Raw data
2. Flat fielding
3. Interpolation of bad pixels
4. Removal of cosmic rays
5. A-B sky subtraction
6. Distortion correction
7. Extraction of individual 2-D spectra
8. Wavelength calibration
9. Removal of residual sky emission
10. Combining all of the spectra
11. Reduction of spectrum of a standard star
12. Flux calibration and telluric correction
9. telluric correction and flux calibration

Telluric absorption

$N_{\text{obs}}(\lambda)$: observed count
$R(\lambda)$: efficiency of atmosphere/telescope/instrument
$F_{\lambda,\text{int}}$: intrinsic flux

$N_{\text{obs}}(\lambda) = R(\lambda) \times F_{\lambda,\text{int}}$
From raw image to reduced spectra

raw data

reduced spectrum

MODS11-0390 [21590.0A:22390.0A][57:61]